2-11-03

• Review normal distributions
• Review correlation on web site
• Discuss how data from identical and fraternal twins can be used to assess the average influence of genes, shared environment, and non shared environment
Correlation, Genes, and Environment

- Distinguishing between genetic effects in individuals (i.e., Oskar and Jack), and average genetic effects across populations
- The normal distribution of measured traits
- Correlation: www.seeingstatistics.com
- What identical and fraternal twin correlations can tell us about average genetic, shared environment, and non-shared environment influences.
Why do individual cases or single twin pairs tell us almost nothing about genetic and environmental influences on their behavior?

- Where MZ (monozygotic) twins differ, it must be non shared “environment”
- Where MZ twins the same, genes and/or shared env.
- We can’t separate genetic and environmental influences for individuals, such as family members reared together
- We can only estimate the average proportional influence of genes and environment across the population from looking at many twin pairs (or many adopting families)
The Basis for Correlation

- Measured traits (weight, height, IQ) that have many causal influences follow a normal distribution (bell curve), with most people in the middle, fewer in the tails. Why?
- We can mathematically assess the average similarity for two normally distributed variables within individuals as for height and weight, or for a single variable across pairs of individuals (i.e., twins), where 0 = no correlation, and 1 = a perfect correlation.
Correlations can be...

- Statistically significant but small, with little influence or importance, in large samples (i.e., $r = .10$ with 400 cases is “significant” but very small)
- Large and statistically significant (i.e., $r=.75$ with 20 cases), but still allowing for a minority of large differences in individual cases (see demonstrations in www.seeingstatistics.com Chapter 12)
How twin correlations allow us to separate average genetic and environmental influences in the population (but not in individuals)

- Identical (MZ) twins reared apart share only their genes, so their correlation directly estimates the average percent of genetic influence (an r of \(.75 = 75\% \))
- Non-shared environmental influences cause the difference between 1 and the MZ correlation (1 - .75 = 25%)
Twin correlations continued…

- For twins reared together, similarity can be caused by shared genes and shared environment.
- But we can separate the influences of genes, shared environment, and non-shared environment by comparing MZ and DZ correlations for twins reared together.
Some extreme examples from twins reared together

- If MZ $r = 1$, DZ $r = .5$, heritability = 1 (DZs share half their genes, so their r must = .5 if heritability = 1)
- If MZ $r = 1$ and DZ $r = 1$, twin similarity must be completely due to shared environment
- Same conclusion for MZ $r = .5$ and DZ $r = .5$, but now there is also evidence for 50% non-shared environment ($1 – MZ r .5 = 50\%$)
- If MZ $r = .5$, DZ $r = .25$, heritability is .5 (twice the MZ-DZ difference), non shared environment is .5 ($1 – MZ r$), and nothing left for shared environment.
A further example, including genetic, shared environment, and non-shared environment

- MZ r = .6, DZ r = .4: heritability is .4 or 40% (twice the MZ-DZ difference), non-shared environment is .4 or 40% (1 - MZ.6), and shared environment accounts for the rest (20%)
Assumptions for twin analyses:

- There are multiple genes with **additive** effects on the trait: there is no **dominance**, or **epistasis** (interaction between genes that would falsely inflate genetic estimates).
- There is no **assortative mating** (this would make DZ twins genetically more similar, and falsely reduce genetic estimates).
- There is equal shared-environment influence for MZ and DZ pairs (violation would falsely increase heritability).