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Report
The error-related negativity (ERN) is an electrophysio-
logical marker thought to reflect changes in dopa-
mine when participants make errors in cognitive
tasks. Our computational model further predicts that
larger ERNs should be associated with better learning
to avoid maladaptive responses. Here we show that
participants who avoided negative events had larger
ERNs than those who were biased to learn more from
positive outcomes. We also tested for effects of re-
sponse conflict on ERN magnitude. While there was
no overall effect of conflict, positive learners had
larger ERNs when having to choose among two good
options (win/win decisions) compared with two bad
options (lose/lose decisions), whereas negative learn-
ers exhibited the opposite pattern. These results
demonstrate that the ERN predicts the degree to
which participants are biased to learn more from their
mistakes than their correct choices and clarify the ex-
tent to which it indexes decision conflict.

Michael J. Frank,* Brion S. Woroch, and Tim Curran

The anterior cingulate (ACC) is critically involved in de-
manding cognitive tasks and is most reliably activated
with increasing task difficulty (Paus et al., 1998; Botvin-
ick et al., 2001). Event-related potential studies have
localized an ACC component called the error-related
negativity (ERN) (Gehring et al., 1993), as it is typically
more negative after participants make incorrect re-
sponses, compared to correct choices. A prevailing
hypothesis holds that the ERN reflects ACC activity
caused by dips in dopamine (DA) following incorrect
responses (Holroyd and Coles, 2002), which is sup-
ported by evidence of these dips from animal experi-
ments (Schultz, 2002; Satoh et al., 2003) and by obser-
vations of a strikingly similar ERP component following
error feedback in trial-and-error tasks (the feedback-
related negativity [FRN]) (Miltner et al., 1997; Gehring
and Willoughby, 2002; Luu et al., 2003). However, the
fundamental computational nature of the ERN and its
implications for behavior are still a matter of intense
debate. In particular, a major competing account sug-
gests that the ERN is an index of response or decision
conflict, of which errors are simply a special case
(Yeung et al., 2004). Each of these ERN theories (error
processing and conflict monitoring) accounts for some
data that the other does not, suggesting that an inte-
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grative approach is in order (Botvinick et al., 2004). Here
we show that the relative size of the ERN predicts the
degree to which participants learn more about the
negative, as compared to positive, consequences of
their decisions. Further, while ERN magnitude was not
associated with overall response conflict, an effect of
conflict was revealed that depended on the partici-
pants learning bias. Positive learners had larger ERNs
when faced with high-conflict win/win decisions among
two good options than during lose/lose decisions
among two bad options, whereas negative learners
showed the opposite pattern. Thus, we show that the
ERN is not only an error detection mechanism, but that
its relative magnitude actually predicts the degree to
which participants learn from errors and that its index-
ing of conflict depends on the type of decision faced
by the particular learner.

We employed a modified version of a reinforcement
learning paradigm previously shown to be sensitive to
dopaminergic manipulation (Frank et al., 2004; M.J.F.
and R.C. OReilly, unpublished data). Three different
stimulus pairs (AB, CD, EF) are presented in random
order, and participants have to learn to choose one of
the two stimuli (Figure 1A). Feedback follows the choice
to indicate whether it was correct or incorrect, but this
feedback is probabilistic. A choice of stimulus A leads
to visual positive feedback in 80% of AB trials, whereas
a B choice leads to negative feedback in these trials
(and vice versa for the remaining 20% of trials). CD and
EF pairs are less reliable: stimulus C is correct in 70%
of CD trials, while E is correct in 60% of EF trials. Over
the course of training, participants learn to choose
stimuli A, C, and E more often than B, D, or F. Note that
learning to choose A over B could be accomplished
either by learning that A leads to positive feedback or
that B leads to negative feedback (or both). To evaluate
whether participants learned more about positive or
negative outcomes of their decisions, we subsequently
tested them with all novel combinations of training
stimuli (e.g., AC, BD, etc.). If participants learned more
from positive feedback, they should reliably choose
stimulus A in all novel test pairs in which it is present.
On the other hand, if they learned more from negative
feedback, they should more reliably avoid stimulus B.

Differences in positive/negative feedback learning in
this task were previously found to depend on different
levels of dopamine in the basal ganglia (Frank et al.,
2004; M.J.F. and R.C. OReilly, unpublished data), as
predicted by our computational model (Frank, 2005). By
our model’s account, dopamine dips during negative
feedback support NoGo learning to avoid selecting the
same response in the future. Following this same logic,
we predicted that the ERN, which is thought to arise
from these same dopamine dips (Holroyd and Coles,
2002), would be large for participants who tended to
learn more from the negative consequences of their de-
cisions. On the other hand, if the conflict monitoring
hypothesis is correct, we expected that larger ERNs
would be observed during novel test pairs that involved
selecting between two stimuli with similar reinforce-
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Figure 1. Probabilistic Cognitive Reinforcement Learning Task

(A) Example stimulus pairs, which minimize explicit verbal encod-
ing. Each pair is presented separately in different trials in random
order, and participants have to select among the two stimuli; cor-
rect choices are determined probabilistically. (B) Behavioral results.
Positive learners were characterized by better performance at
choosing stimulus A (which depends on learning from positive rein-
forcement), whereas negative learners were better at avoiding stim-
ulus B (which depends on learning from negative reinforcement). F
Error bars reflect SEM. L

(

c

ment histories (e.g., 80% against 70%), relative to pairs L
tthat should elicit less conflict (e.g., 80% against 30%).
c
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As expected, the base-to-peak ERN magnitude follow- s
ing erroneous test responses was larger than that of N

tthe CRN following correct choices (−3.04 �V compared
with −2.29 �V, t[48] = 4.4, p < 0.0001, Figure 2). Notably,
the ERN magnitude was predictive of the degree to
which participants learned more from the negative than c

lpositive consequences of their decisions. That is, more
negative ERNs were correlated with a propensity to B

vavoid the most negative stimulus B in novel test pairs
(r = −0.46, p < 0.001; Figure 3A) and with a bias to more r

treliably avoid B than to choose the most positive stimu-
lus A (r = −0.35, p = 0.01). In contrast, the CRN magni- t

wtude was not predictive of either positive (r = −0.19,
n.s.) or negative (r = −0.2, n.s.) learning. Finally, rela- 0

ftively larger ERN than CRN magnitudes were correlated
with better negative than positive learning (r = −0.35, d

lp = 0.01; Figure 3B).
To determine whether these correlational effects f

twere robust, we categorized participants as either posi-
tive or negative reinforcement learners. Positive learn- B

mers (n = 24) were selected as those participants who
performed better at choosing A than avoiding B in

tnovel test pairs, whereas negative learners (n = 25)
were selected based on better performance at avoiding l

sB (Figure 1A). Group comparisons revealed that posi-
tive learners were better than negative learners at a
igure 2. ERP Predictors of Positive and Negative Reinforcement
earning

A and B) Response-locked ERPs during correct and erroneous
hoices in the test phase of the probabilistic reinforcement task.
arger ERNs were observed in negative learners. (C and D) Scalp
opographies are shown for CRNs/ERNs. Gray dots show electrode
luster from which voltages were averaged across to generate all
RP waveforms in this paper. (E and F) Feedback-locked ERPs

ollowing correct and incorrect feedback during training, synchro-
ized to each individuals FRN (shown at 0 ms, feedback was pre-
ented 250 ms prior on average; see Experimental Procedures).
egative learners had larger relative FRNs to negative than posi-

ive feedback.
hoosing A (F[1,47] = 7.4, p = 0.009), while negative
earners were better than positive learners at avoiding

(F[1,47] = 20.0, p < 0.0001; Figure 1B). Analysis of
ariance (ANOVA) results were consistent with the cor-
elational results described above. Specifically, nega-
ive learners had significantly larger ERN amplitudes
han positive learners (F[1,47] = 6.8, p = 0.01; Figure 2),
ith no group differences in CRN magnitude (F[1,47] =
.2). Moreover, negative learners showed a greater dif-
erentiation between ERN and CRN magnitudes than
id positive learners (F[1,47] = 9.5, p= 0.0035). These

earning biases and associated ERP correlates were
ound despite no overall test accuracy difference be-
ween groups, either in the tendency to choose A over

in the AB pair (F[1,47] = 1.0, n.s.) or in overall perfor-
ance among novel test pairs (F[1,47] = 0.85).
That negative learners had larger ERNs suggests that

hese individuals are more affected by, and therefore
earn more from, their errors. This notion makes the
trong prediction that the feedback negativity should
lso be relatively larger in these participants to negative
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Figure 3. ERP Correlates of Learning and Conflict

(A and B) Across all participants, better overall negative reinforce-
ment learning was associated with larger ERN magnitudes, and
preferential biases to learn more from negative than positive feed-
back were associated with relatively more negative ERNs than
CRNs. (C and D) Error versus conflict effects on ERN magnitude.
There was a large main effect of error, but not conflict. ERNs were
somewhat larger on low-conflict error trials, in which participants
would be more likely to detect that they had made an error.
compared with positive feedback, which could poten-
tially reflect the neural mechanism causing them to be
more sensitive to their mistakes.

To test this idea, we recorded feedback-locked ERPs
during training. Indeed, while groups did not differ in
their FRN magnitudes to either negative feedback
(F[1,47] = 0.02) or positive feedback (F[1,47] = 2.4, n.s.),
negative learners had relatively larger FRNs to negative
compared with positive feedback than did positive
learners (F[1,47] = 3.93, p = 0.05; Figures 2E and 2F). In
the feedback-locked ERP, there was also a late positive
P300 component that was larger for negative than posi-
tive feedback (t[48] = 6.6, p < 0.0001). However, unlike
the FRN, relative P300 magnitude to negative feedback
was not greater in negative than positive learners
(F[1,47] = 0.0). Thus, this P300 may relate to conscious
awareness that an error has occurred but is not predic-
tive of learning from these errors. This is consistent
with reports that the P300 responds greater to nega-
tively affective stimuli than to positive stimuli (Ito et al.,
1998) and may reflect disappointment after having
made an incorrect choice (Yeung and Sanfey, 2004).
Overall, these results are consistent with the hypothe-
sis that the ERN and FRN reflect common neural pro-
cesses within the ACC (Miltner et al., 1997; Gehring and
Willoughby, 2002; Luu et al., 2003; Nieuwenhuis et al.,
2004) and are both associated with dips in dopamine
release (Holroyd and Coles, 2002).

Finally, we were also interested in evaluating the role
of response conflict on ERN magnitude. According to
the conflict monitoring hypothesis, rather than detect-
ing errors per se, the ACC (and by extension, the ERN)
is sensitive to the coactivation of mutually incompatible
responses (Yeung et al., 2004). By this account, the
ERN is observed after errors as participants tend to in-
ternally correct their erroneous choice by activating the
response they should have made, and this conflicts
with the incorrect response already activated. Note that
when selecting among two stimuli that have similar re-
inforcement histories, participants should have more
difficulty making choices and should be more likely to
activate both competing responses. Thus, the conflict
monitoring hypothesis predicts that the ERN should be
larger in these trials in which multiple responses com-
pete for the control of action (Yeung et al., 2004). To
address this issue, we divided novel test pairs into low-
and high-conflict decisions. Low-conflict decisions
were defined as test trials that required choosing an
overall positive stimulus (A, C, or E) over an overall
negative stimulus (B, D, or F), whereas high-conflict
decisions required choosing among two stimuli that
have similar overall associations (both positive or both
negative).

To determine whether there were differential contri-
butions of conflict versus error in the ERN magnitude,
we performed a 2 × 2 × 2 repeated-measures ANOVA
on group, conflict (low, high), and error (correct, incor-
rect). There was a highly significant main effect of error
(F[1,47] = 22.2, p < 0.0001, Figures 3C and 3D), which
interacted with the positive/negative learning group
(F[1,47] = 9.5, p = 0.0035), again showing bigger ERNs
in negative learners. Notably, there was no main effect
of conflict (F[1,47] = 2.5, p > 0.1), no interaction with
learning group (F[1,47] = 0.4), and no error by conflict
interaction (F[1,47] = 0.5). [The nonsignificant trend for
a conflict effect was actually in the reverse direction,
with low-conflict decisions eliciting numerically larger
ERNs than high-conflict decisions. Strictly speaking,
Yeung et al. (2004) argue that the high-conflict effect
should be observed prior to the response in correct
trials (when conflict is resolved). However, we did not
observe a consistent negativity prior to the response,
despite using preresponse baseline corrections that
should have enabled these to be observed if they ex-
isted. We also found no effect of conflict on the stimu-
lus-locked N2.]

Nevertheless, we reasoned that the lack of conflict
effect across all participants could be explained by the
possibility that distinct sorts of decisions would evoke
conflict in positive and negative learners. To test this
idea, we further divided high-conflict decisions into
win/win decisions (choosing among two positive stim-
uli) and lose/lose decisions (two negative stimuli). We
hypothesized that both during and following win/win
decisions, positive learners would be more likely to ac-
tivate the alternative choice for which they had also
developed a positive association. In contrast, negative
learners should be more likely to activate both re-
sponses during lose/lose decisions as they attempt to
avoid both negative stimuli. Thus, the conflict hypothe-
sis predicts that positive learners should have larger
ERNs during win/win than lose/lose decisions, whereas
negative learners should show the opposite pattern.

Indeed, while positive and negative learners did not
differ in ERN magnitudes to overall high-conflict deci-
sions (F[1,47] = 1.94, n.s.), there was a significant in-
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cteraction between positive/negative group and win/win
pversus lose/lose decision type (F[1,47] = 7.6, p = 0.008;
pFigure 4). That is, ERNs were larger in positive learners
nduring win/win compared with lose/lose decisions
2(t[23] = −2.3, p = 0.03), while the opposite pattern was
b

observed in negative learners (t[24] = 1.53, p = 0.14), a
f

trend that was significant in just error trials (t[24] = 2.6,
m

p = 0.016). In other words, positive reinforcement learn- o
ers appear to have experienced greater conflict when (
choosing between two stimuli that were each pre- i
viously associated with positive (compared with nega- t
tive) feedback, whereas negative reinforcement learn- m
ers may have experienced greater conflict when choosing
among negative stimuli. o

k
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Taken together, our findings provide valuable con- h
straints toward advancing theoretical perspectives on b
the role of the ERN in reinforcement learning and deci- r
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Figure 4. Response-Locked ERPs during Win/Win and Lose/Lose a
Decisions, Across Both Correct and Error Trials a
(A and B) Positive learners had larger ERNs during high-conflict e
win/win than lose/lose decisions, whereas negative learners

cshowed the reverse pattern. (C and D) Bar graphs show the mean
tof the per-subject peak amplitudes within each group, again show-

ing an interaction between decision conflict type and learning bias.
Note that the discrepancy between ERN magnitudes in the bar (
graphs and those observed in the waveforms is due to the reduc- t
tion of grand average ERP amplitude by averaging across individ- t
ual participants ERPs, which occur at different latencies. (E and F) 2
Scalp topographies of voltage differences between lose/lose and

bwin/win decisions.
l
b

arge literature pointing to a role for the ERN in error
etection (Falkenstein et al., 1991; Holroyd and Coles,
002; Holroyd et al., 2003; Yasuda et al., 2004; Pailing
nd Segalowitz, 2004) but go beyond these studies to
emonstrate that the ERN also reflects error correction.
revious attempts to link the ERN with error correction

ailed to show a relationship with the behavioral slow-
ng that is typically observed following errors (Gehring
nd Fencsik, 2001; Hacjak et al., 2004). We find that,
ather than having an effect on response speed, larger
RNs were associated with a bias to learn to avoid
egative events more than to seek positive events.
econd, because negative learners also had relatively

arger FRNs following negative feedback, our results
uggest that the FRN may index a trait or state variable
ssociated with whether participants are more respon-
ive to positive or negative reinforcement and provide
orroboratory evidence for the hypothesis that the FRN
nd ERN reflect common neural processes (Luu et al.,
003; Nieuwenhuis et al., 2004; Miltner et al., 1997;
ehring and Willoughby, 2002; but see van Veen et al.,
004; Nieuwenhuis et al., 2005). Third, our findings shed

ight on competing theories of error and conflict moni-
oring within the ACC. While there was no overall con-
lict effect on ERN magnitude, positive and negative
earners may have experienced differential conflict de-
ending on whether they were making win/win or lose/

ose decisions. Finally, our results provide insight into
he consistent observation that both ERNs and harm
voidance are enhanced in participants with negative
ffect, anxiety, and depression (Luu et al., 2000; Hacjak
t al., 2004; Abrams et al., 2004), suggesting that in-
reased ACC activity can lead to enhanced sensitivity
o one’s mistakes and subsequent avoidance behavior.

Despite not manipulating or measuring dopamine
DA) function directly, our findings also lend support to
he general notion that ERNs are related to DA dips
hat occur during error processing (Holroyd and Coles,
002). Specifically, our computational model of the
asal ganglia suggests that dips in DA enable NoGo

earning to avoid maladaptive decisions, whereas DA
ursts support Go learning from positive decision out-
omes (Frank, 2005). We recently confirmed a central
rediction of this model by showing that Parkinson’s
atients, who have low levels of DA, learned more from
egative than positive reinforcement (Frank et al.,
004). Further, dopaminergic medication reversed this
ias, improving positive but impairing negative rein-

orcement learning, consistent with the notion that
edication increases DA levels and blocks the effects
f DA dips that would normally support NoGo learning

Frank, 2005). We also observed this same crossover
nteraction on positive/negative learning in young, heal-
hy participants taking low doses of two opposing DA
edications (M.J.F. and R.C. OReilly, unpublished data).
Moreover, in light of this model, our findings also rec-

ncile conflicting ERN results previously found in Par-
inson’s patients (Holroyd et al., 2002; Falkenstein et
l., 2001). Specifically, the model predicts that, due to

ow DA levels and intact NoGo learning, patients should
ave spared ERNs. However, DA medication should
lock these DA dips during errors and should therefore

educe the ERN. Indeed, spared ERNs were found in
ne study with nonmedicated patients (Holroyd et al.,
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2002), while reduced ERNs were found in another with
medicated patients (Falkenstein et al., 2001). Reduced
ERNs were also found in healthy participants taking
haloperidol (Zirnheld et al., 2004), which at low doses
increases DA release (Wu et al., 2002) and therefore
may also block the effects of DA dips needed to learn
NoGo (Frank, 2005; M.J.F. and R.C. OReilly, unpub-
lished data). Notably, this drug also increased errors of
commission (Zirnheld et al., 2004), consistent with im-
paired NoGo learning. Finally, this same logic explains
the reduced ERNs observed in patients with schizo-
phrenia (Bates et al., 2004), who have abnormally high
levels of subcortical DA (McGowan et al., 2004).

It is tempting to suggest that, in the present study,
healthy participants who differed in ERN magnitudes
and associated reinforcement learning biases may also
have underlying differences in DA levels. However, it is
more than likely that other neurotransmitters interacting
with dopamine also play an essential role in producing
the observed dissociations. In particular, large ERNs
and enhanced harm avoidance have both been associ-
ated with elevated serotonin levels (Fallgatter et al.,
2004; Abrams et al., 2004; Moresco et al., 2002). Nota-
bly, serotonin may exert its effects indirectly due to op-
ponent interactions with dopamine (Daw et al., 2002):
high levels of serotonin may inhibit DA release, causing
dopamine dips to be more effective (Nocjar et al., 2002).
Future research will more directly test the involvement
of DA and serotonin using imaging and genetic analysis
methods. Nevertheless, our present ERP results show
that, whatever the neuromodulatory mechanism, indi-
vidual differences in learning biases are associated
with differential recruitment of the ACC during rein-
forcement.

Our data also revealed some support for the conflict
monitoring hypothesis of ACC function (Botvinick et al.,
2001; Yeung et al., 2004). While the ERN magnitude was
not overall larger for high-conflict decisions, this could
be explained by the notion that positive and negative
learners may experience conflict under different deci-
sion situations. Indeed, positive learners had relatively
larger ERNs for win/win decisions, whereas negative
learners had larger ERNs for lose/lose decisions. Nev-
ertheless, this same pattern of results is predicted by
a recent alternative account suggesting that the ACC
predicts error likelihood more than it detects response
conflict (Brown and Braver, 2005). In particular, positive
learners may be more likely to perceive that they are
making an error when faced with a win/win decision,
whereas they may feel more uncertain about lose/lose
decisions (and vice versa for negative learners). This
notion is consistent with recent reports that ERNs are
attenuated under conditions of uncertainty (Pailing and
Segalowitz, 2004). Future studies are therefore required
to distinguish between these alternatives.

In summary, our results provide insight into the un-
derlying computational function of the ERN. As noted
above, various accounts suggest that DA dips occur
when outcomes are worse than expected. In the Hol-
royd and Coles (2002) model, these dips activate ACC
neurons that subsequently modify behavior. In our own
modeling, we have suggested that these DA dips drive
NoGo learning in the basal ganglia (Frank, 2005; OReilly
and Frank, 2005), which then modulate response selec-
tion processes in cortex. This model accounts for vari-
ous other findings of BG involvement in cognition. Nev-
ertheless, we do not discount the likely possibility that
multiple pathways are involved in avoidance learning,
including both the BG and the ACC. It is also not en-
tirely clear that ACC activity simply reflects the effects
of DA dips, as is assumed by most models; it seems
plausible that rather this activity causes the observed
dips in midbrain DA. This is consistent with the exis-
tence of projections from the ACC to striosomes of the
basal ganglia (Eblen and Graybiel, 1995) which in turn
send inhibitory projections to DA cells in the ventral
tegmental area (Joel and Weiner, 2000). Further, ACC
lesions in animals have been shown to have reciprocal
effects on the subcortical DA system (Ventura et al.,
2004). Thus, further research is required to disentangle
the directional effect of the involvement of the ACC and
DA in error detection, correction, and cognitive deci-
sion making.

Experimental Procedures

Sample
Sixty-five young healthy individuals participated in our study. Five
participants were excluded due to technical problems (one com-
puter crash, one fell asleep, three had problems with EEG net
setup/unable to achieve minimum impedance values). In addition,
we filtered out participants who did not satisfy global performance
measures during the test sessions prior to statistical analysis.
Thus, we filtered out data from participants who did not perform
better than chance (50%) on either the A or B test pairs across
all segments (Frank et al., 2004). This amounted to 11 out of 60
participants whose data were not analyzed further. The remaining
49 participants (female:male = 28:21; between the ages of 18 and
29, mean 20.0, SEM 0.39) were included in the behavioral and elec-
trophysiological analysis described above.

Task Procedures
Procedures were similar those described previously (Frank et al.,
2004) but were modified for ERPs. Participants sit in front of a com-
puter screen and view pairs of visual stimuli that are not easily
verbalized (Japanese Hiragana characters, Figure 1A), presented in
white on a black background, in 44 pt font. On each trial, the stimu-
lus events consisted of a fixation period (randomly sampled from
the interval 250–750 ms, green plus sign), followed by stimulus pair
presentation for 750 ms, followed by a blank screen for 350 ms,
followed by visual feedback for 600 ms.

Three different stimulus pairs (AB, CD, EF) are presented in ran-
dom order. Participants press the left key on the button box to
select the stimulus on the left or press the right key to select the
stimulus on the right. Visual feedback is provided following each
choice (a yellow smiley face for correct responses or a red crossout
symbol for incorrect responses). If no response is made within 1000
ms, the words “no response detected” are printed in red. The posi-
tion of the correct stimulus was randomized across trials, and the
assignment of Hiragana character to hierarchical element A–F was
randomized across participants.

We enforced a performance criterion (evaluated after each train-
ing block of 60 trials) to ensure that all participants were at the
same performance level before advancing to each test segment.
Because of the different probabilistic structure of each stimulus
pair, we used a different criterion for each (65% A in AB, 60% C in
CD, 50% E in EF). After reaching this criterion, participants were
subsequently tested with the same training pairs, in addition to
all novel combinations of stimuli, in random sequence. They were
instructed (prior to the test phase) to use gut instinct if they did
not know how to respond to these novel pairs. Each test pair was
presented six times for a maximum of 1000 ms duration, and no
feedback was provided.

In order to obtain sufficient trial counts for the ERP measures,
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participants performed three segments of the same task, each time p
dwith new stimuli. To determine whether participants were positive

or negative reinforcement learners, performance on A test pairs i
(AC, AD, AE, EF) and B pairs (BC, BD, BE, BF) was averaged across B
the three segments. If accuracy in choosing stimulus A was greater d
than that of avoiding stimulus B, the participant was classified as a
a positive learner, and vice versa for negative learners.

B
J

Electrophysiological Recording and Analysis
1

Scalp voltages were collected with a 128 channel Geodesic Sensor
BNet (Tucker, 1993) connected to an AC-coupled, 128 channel, high-
tinput impedance amplifier (200 Mý, Net Amps, Electrical Geodesics
8Inc., Eugene, OR). Amplified analog voltages (0.1–100 Hz band-

pass, −3 dB) were digitized at 250 Hz. Individual sensors were ad- B
justed until impedances were less than 50 kW. The feedback- l
locked EEG was digitally low-pass filtered at 40 Hz, while a 15 Hz D
low-pass filter was applied to remove bifurcations in the response- b
locked EEG, permitting more reliable peak amplitude measures. Tri-

Dals were discarded from analyses if they contained incorrect re-
Rsponses, eye movements (EOG over 70 V), or more than 20% of
schannels were bad (average amplitude over 100 V or transit ampli-

tude over 50 V). Across all the present analyses, subjects had at E
least 29 trials per condition. Individual bad channels were replaced f
on a trial-by-trial basis with a spherical spline algorithm (Srinivasan N
et al., 1996). EEG was measured with respect to a vertex reference F
(Cz), but an average-reference transformation was used to mini- A
mize the effects of reference site activity and accurately estimate v
the scalp topography of the measured electrical fields (Dien, 1998; e
Picton et al., 1995). The average reference was corrected for the o
polar average reference effect (Junghofer et al., 1999).

FFollowing Yeung et al. (2004), response-locked ERPs (ERN, CRN)
Ewere computed within epochs starting 800 ms prior to the re-
Isponse and lasting 200 ms after the response and were baseline
Ccorrected with respect to the first 100 ms of these epochs. Feed-
Fback-locked ERPs (FRN) were computed within epochs starting
H100 ms prior to the feedback and lasting 1000 ms afterward. In all
bcases, ERPs were baseline corrected with respect to the first 100

ms of the epoch. Following other ERN studies using similar record- F
ing procedures (Tucker et al., 2003), analyses focused on a cluster g
of sensors surrounding the standard FCz location, as depicted with c
the sensor locations marked in Figures 2 and 4. Following Yeung 5
and Sanfey (2004) and Holroyd et al. (2002), we defined the ERN/

FCRN and FRN as the peak-to-peak voltage difference between the
bfirst negative peak following the response (mean latency = 58 ms)
3and the preceding positive peak. Similarly, FRN amplitude was cal-
Gculated as the difference between the negative FRN peak within a
fwindow of 190–300 ms (mean latency = 249 ms) and the preceding
2positive peak. In the FRN plots (Figure 4), waveforms were synchro-

nized to each individuals FRN, which appears at 0 ms. This was G
done because better positive than negative learning was correlated t
with longer FRN latencies (r = 0.41, p = 0.003), and these latency e
differences cause smearing of FRN magnitudes when displayed

G
relative to the feedback. Synchronizing to each individual’s FRN

E
alleviates this problem and permits displaying of actual FRN mag-

P
nitudes across positive and negative learners.
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