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Abstract

■ A paradigmatic test of executive control, the n-back task, is
known to recruit a widely distributed parietal, frontal, and striatal
“executive network,” and is thought to require an equally wide
array of executive functions. The mapping of functions onto sub-
strates in such a complex task presents a significant challenge to
any theoretical framework for executive control. To address this
challenge, we developed a biologically constrained model of the
n-back task that emergently develops the ability to appropriately
gate, bind, and maintain information in working memory in the
course of learning to perform the task. Furthermore, the model is

sensitive to proactive interference in ways that match findings
from neuroimaging and shows a U-shaped performance curve
after manipulation of prefrontal dopaminergic mechanisms simi-
lar to that observed in studies of genetic polymorphisms and
pharmacological manipulations. Our model represents a formal
computational link between anatomical, functional neuroimag-
ing, genetic, behavioral, and theoretical levels of analysis in the
study of executive control. In addition, the model specifies one
way in which the pFC, BG, parietal, and sensory cortices may
learn to cooperate and give rise to executive control. ■

INTRODUCTION

Goal-directed behaviors are enabled by executive functions
that help stop prepotent responses, resolve interference,
update working memory, shift mental sets, and coordi-
nate multiple tasks (e.g., Friedman & Miyake, 2004; Logie,
Cocchini, Delia Sala, & Baddeley, 2004; Salthouse, Atkinson,
& Berish, 2003; Miyake et al., 2000). Such broad categories
of executive function can be fractionated into lower-level
component processes. For example, working memory up-
dating tasks require storing information, gating informa-
tion into and out of working memory, tracking serial
order, and selective attention. These processes may in turn
bemapped to diverse parietal, frontal, and striatal substrates
(e.g., Wager & Smith, 2003), posing a many-to-many prob-
lem in mapping executive functions to their neural sub-
strates. A paradigmatic example of this many-to-many
mapping problem is the n-back task (e.g., Kirchner, 1958).
The main purpose of this article is to elucidate the mecha-
nistic basis of this complex task using a biologically con-
strained computational model.

The n-back Task

In the n-back task, subjects identify over consecutive trials
whether the current stimulus matches a stimulus pre-
sented in n trials previously. At the cognitive level, this task

is thought to involve numerous executive processes: active
maintenance of the last n items; updating of new items
so that they can be actively maintained; rapid binding of
items to their serial order so that responses are based on
the match between the current item and the n-back item
and not between items matching at a non-n lag; and reso-
lution of any proactive interference arising from non-n lag
items. At the biological level, neuroimaging, pharmacologi-
cal, and genetic polymorphism studies indicate that n-back
performance is associated with a distributed network of
parietal, frontal, and striatal sites (Tsuchida & Fellows,
2009; Owen, McMillan, Laird, & Bullmore, 2005; Olesen,
Westerberg, & Klingberg, 2003) and dopaminergic mecha-
nisms (Apud & Weinberger, 2007; Tan et al., 2007; Meyer-
Lindenberg et al., 2006; Aalto, Brück, Laine, Någren, &
Rinne, 2005; Goldberg et al., 2003; Mattay et al., 2003; Egan
et al., 2001). This cognitive and neurobiological complex-
ity makes the n-back task a useful test case for formal ac-
counts of how executive functions arise from their neural
substrates.
One feature of the n-back task makes it especially ap-

propriate for this undertaking: It appears to require rapid
binding of stimuli to representations of their serial order.
Symbolic cognitive models (e.g., ACT-R) fulfill this require-
ment through the use of propositional representations
and explicit variables and have yielded a working n-back
model ( Juvina & Taatgen, 2007). However, the brain oper-
ates on the basis of distributed representations and slowly
adapting synaptic connections. The difficulty in reconcilingUniversity of Colorado
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this distributed, slowly adapting neural substrate with the
n-backʼs rapid binding requirements could explain the ab-
sence of more biologically constrained models of this task.
Here we present a model that overcomes this challenge
and is capable of learning the n-back without a mechanism
specifically implemented for symbolic binding.

Model Architecture

Our model is rooted in the biologically plausible prefron-
tal BG working memory (PBWM) architecture (Hazy,
Frank, & OʼReilly, 2006, 2007, 2010; OʼReilly & Frank,
2006). PBWMʼs essential principle is that task-relevant infor-
mation can be maintained in pFC and help guide success-
ful task performance by a process of biased competition
(Desimone & Duncan, 1995); the reward signals resulting
from successful task performance, in the form of phasic
dopamine (DA), can then train the BG through reinforce-
ment learning to send an “updating signal” for gating new
information into pFC. PBWM, thus, integrates numerous
ideas from computational neuroscience, implementing re-
inforcement learning in terms of phasic DA via the primary
value–learned value (PVLV) mechanism (Hazy et al., 2010;
OʼReilly & Frank, 2006), resolving the stability–flexibility
dilemma (Goschke, 2000) with flexible gating mechanisms
and yielding biased competition via prefrontal representa-
tions stabilized through recurrent connectivity and tonic
DA (e.g., Cohen, Braver, & Brown, 2002). The architecture
supporting these interactions is schematically illustrated in
Figure 1.
Our implementation of PBWM, depicted in Figure 2, is

most closely based on the PBWM model of the phonologi-
cal loop (OʼReilly & Frank, 2006). As in that previous work,
the model receives input from a layer in which 1 of 10 dif-
ferent units is activated on every trial of the task, each unit
corresponding to a different stimulus. The networkʼs re-
sponse on every trial is indicated by the patterns of activa-

tion across two output layers: a “verbal output” layer with
10 units, corresponding to each of the input stimuli indi-
cating the networkʼs best guess as to the n-back stimulus,
and a “manual output” layer with 2 units, corresponding to
match and nonmatch responses, indicating the networkʼs
best guess as to whether the current stimulus matches the
n-back stimulus. (Some n-back tasks require subjects only
to indicate whether there is a match between the current
and n-back stimulus and not the actual identity of the
n-back stimulus; we included both output requirements
in our model because subjects are likely to keep the iden-
tity of the n-back stimulus identity in memory regardless of
the precise variant of n-back they are performing.) Finally,
a “posterior cortex” layer of 100 units is bidirectionally
connected with each of these layers and provides a sub-
strate for biased competition to take place. We refrain from
identifying this layer with a particular neocortical area, as it
contains no special mechanisms that might be thought to
differentiate it from many areas of neocortex.

Superimposed on this structure are the core compo-
nents of PBWM. These components include prefrontal
layers organized into stripes, consistent with the functional
macrocolumns observed in the monkey pFC (e.g., Rao,
Williams, & Goldman-Rakic, 1999; Pucak, Levitt, Lund, &
Lewis, 1996; Levitt, Lewis, Yoshioka, & Lund, 1993). The
units constituting these stripes are unique relative to all
other units in twoways: They are recurrently self-connected,

Figure 1. Schematic illustration of core PBWM architecture, in which
prefrontal context representations of relevant prior information and
current goals bias the sensory motor mappings that are learned by
posterior cortical “hidden” layers. The prefrontal context representations
are updated via dynamic gating by the BG. These gating functions are
learned by the BG on the basis of input from the PVLV system, which
provides modulatory dopaminergic input depending on the reward
value of the actions performed by the BG.

Figure 2. (A) The PBWM architecture includes units based on the
pFC and BG, including ventral and dorsal striatum, grouped into “stripes”
(the visible subgroups within prefrontal and striatal layers). Input is
provided to the model about the identity of the current stimulus and
its serial order; the model is required to produce a manual output
about whether the current stimulus matches that presented n trials
previously and a verbal output corresponding to the identity of the
stimulus presented n trials previously. (B) The parietal layers represent
the serial order of successive trials in terms of n, using a graded and
compressive code based on the mean and variance observed in the
tuning curves of rank order sensitive neurons in the horizontal segment
of the IPS.
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and they contain an excitatory hysteresis current.When com-
bined, these features enable persistent, self-sustaining pat-
terns of activity. The resulting temporally stable patterns of
activity are gated on a stripe-specific basis by a set of corre-
sponding stripes in a BG “matrix” layer, modeled after the
medium spiny projection neurons of the striatal matrix. Each
stripe in the matrix (stripes are represented as visible sub-
groups within the BG layers in Figure 2) contains go and
no-go units that are spatially intermixed (as they are biologi-
cally). Go units correspond to the direct pathway of the
striatum, and no-go units correspond to the indirect path-
way. As such, go units have a disinhibitory effect on cortico-
thalamic gating, thereby allowing working memory to be
updated; no-go units have an inhibitory effect on cortico-
thalamic gating, thereby helping to keep the contents of work-
ing memory the same despite new incoming information.

Learning Algorithms in the Model

Central to the PBWM architecture is the use of the PVLV
algorithm, which can be seen as a biologically plausible im-
plementation of traditional temporal difference reinforce-
ment learning (Hazy et al., 2010; OʼReilly, Frank, Hazy, &
Watz, 2007). The PVLV algorithm is used specifically and
selectively to train the go and no-go units of the striatum.
Ultimately, PVLV trains go units to fire in response to stim-
uli that predict reward (and which might therefore be up-
dated into working memory), whereas no-go units learn to
fire when stimuli do not predict anything more rewarding
than the information currently represented in working
memory. In conjunction with the prefrontal layers, PBWM
implements mechanisms that at a higher level of analysis
can enable basic executive functions like active mainte-
nance and gating (e.g., OʼReilly & Frank, 2006).1

The other components of the model are all trained with
a standard Hebbian learning rule and an error-driven learn-
ing rule (OʼReilly & Munakata, 2000). The end result of this
combination of learning rules and PVLV is that, by the end of
training, networks learned to fire primarily go units in certain
stripes in the BG, such that the particular stripes activated
depend on the activity patterns in other layers. This stripe-
specific go firing within the BG updates corresponding
stripes in pFCwith information currently present in the input
layer. BG stripes that are not used for a given trial fire pri-
marily no-go units, resulting in the preserved maintenance
of information frompreceding trials. Finally, pFC activity rep-
resenting this important maintained information biases
the posterior layer, which in turn biases the verbal and man-
ual output layers. These connection weights are incremen-
tally refined via Hebbian and error-driven learning so that
they are most likely to produce the correct verbal and man-
ual outputs (see Appendices I and II for additional details).

Serial Order Representations of the Model

Interestingly, the model autonomously learns to take advan-
tage of the stripe-specific gating possible within the PBWM

architecture so as to solve to the variable binding problem
posed by the n-back task ( Juvina & Taatgen, 2007). With
training, the BG sends an increasingly differentiated gating
signal such that the pFC can learn tomaintain items in differ-
ent stripes conditional on their serial order. This increased
specificity of gating enables distribution of the taskʼs mne-
monic demands across multiple stripes and solves the
rapid binding problem by allowing the model to autono-
mously bind representations of items to their serial order
(e.g., OʼReilly, Busby, & Soto, 2003).
One crucial addition to this standard PBWM architecture

is the parietal layer, which represents the serial order of
successive stimuli using a graded and compressive code
(in which representations are distributed and increasingly
similar to one another as the serial order of the current
stimulus increases; depicted in Figure 2B for serial orders
1, 2, and 3, respectively). The localization of such a serial
order representation to parietal cortex is consistent with
previous models (Botvinick & Watanabe, 2007; Botvinick
& Plaut, 2006), with electrophysiology and neuroimaging
of serial order representation in the intraparietal sulcus
(IPS; Marshuetz, Reuter-Lorenz, Smith, Jonides, & Noll,
2006; Nieder, Diester, & Tudusciuc, 2006;Marshuetz, Smith,
Jonides, Degutis, & Chenevert, 2000) and with the IPS
activity observed across an n-back meta-analysis (Owen
et al., 2005). Recent evidence suggests that working mem-
ory contents are encoded as a function of their ordinal posi-
tion in the sequence of to-be-remembered items (Van Dijck
& Fias, 2011), consistent with our use of a parietally based
serial order mechanism to satisfy the working memory
updating demands of the n-back task. Thus, the serial
order representations in our model are different from the
representations expected to support processing of other
attributes (e.g., color or shape), in that they are explicitly
based on the known tuning curves of neurons coding for
serial order in the IPS.
Importantly, we implemented serial order representa-

tions not as a continuous number line that stretches to
the number of trials, but as a periodic repeat of item po-
sitions. For example, in the 2-back task, the serial order
representations alternate between 1 and 2, whereas in the
3-back task, they repeatedly cycle through 1, 2, and 3. This
periodicity of the serial order representations is imposed
by fiat or “prescribed.” Although we return to this issue in
the discussion, it is a difficult and outstanding problem of
how such serial order representations and their dynamics
might be learned. We abstract over this difficulty here. This
nonetheless leaves much to be solved: The model must
still autonomously learn that these serial order representa-
tions are important to bind them to the items presented
on each trial and to update and maintain this information
appropriately.

Organization of the Current Paper

The results of our simulations are outlined as follows. After
describing the details of the model and the way in which
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the n-back task and its instructions were presented to the
network, we demonstrate the capacity of the network to
replicate hallmark findings from the n-back literature,
spanning multiple levels of analysis (behavioral, hemody-
namic, and genetic). We then quantitatively analyze the
modelʼs prefrontal and striatal functioning to support an
expository description of the modelʼs functioning. We next
discuss how our simulations inform cognitive theorizing
about how executive functions like active maintenance,
gating, and the resolution of proactive interference may
emerge from a highly interactive fronto-parieto-striatal
circuit. Finally, we describe how our model provides not
only a computationally explicit example of the prefrontal–
parietal interactions commonly observed in the consider-
able neuroimaging literature on this and other executive
control tasks (de Frias et al., 2010; Tsuchida & Fellows,
2009; Owen et al., 2005; Egan et al., 2003; Olesen et al.,
2003) but also how it leads to new theoretical insights
and untested predictions.

METHODS

Implementation

To illustrate the biologically constrained nature of our
model, here we briefly review the Leabra framework
(OʼReilly, 2001). This framework simulates neural process-
ing in terms of interconnected units, each of which has a
membrane potential determined by separate excitatory,
inhibitory, and leak conductances. Fluctuations in the re-
sulting membrane potential are thresholded and trans-
formed to yield a rate-coded output that contributes to
the excitatory conductance of all other units to which
a particular unit is connected in proportion to the con-
nection weight. Connection and bias weights are initially
randomized but are shaped over the course of train-
ing according to Hebbian, reward-driven, and biologi-
cally realistic error-driven learning rules (see below). Units
are grouped into layers that undergo a k-winners-take-all
(kWTA) function for simulating the influence of local inhibi-
tory interneurons. These biologically inspired mechanisms
have been used in over 40 models to capture a variety of
detailed phenomena (e.g., OʼReilly & Munakata, 2000), in-
dicating that these simple biological mechanisms can yield
human-like performance in a number of domains.
In addition to the PBWM implementation (see Ap-

pendix I, and depiction in Figure 2A), sequential order was
represented via the scaled log-normal function (Botvinick
& Watanabe, 2007):

RρðrÞ ¼ exp −
ðlnr− lnρÞ2

2σ2

 !

wherein Rρ (r) is the activation level of the ρth unit in the
layer on a trial with rank r and σ is a parameter determining
the relative specificity of each unit to its preferred rank. We

elaborated on this scheme by convolving the activation
levels specified by this scaled-log normal function with
Gaussian variance conforming to that empirically observed
in the IPS (Nieder et al., 2006); this convolution is included
here as an additional biological constraint on the parietal
layer and can be observed as “noise” in the activation
dynamics depicted in the parietal layer of Figure 2B. In the
model, this parietal layer is interconnected both with the
pFC and (strongly) with the BG, consistent with the known
anatomyof humans andother primates (Fernández-Miranda
et al., 2008; Yeterian & Pandya, 1993) and with the func-
tionally interconnected parieto-fronto-striatal network com-
monly observed in neuroimaging studies of the executive
functions.

Each named layer of themodel contains features that un-
iquely associate its layers with the identified brain regions.
For example, prefrontal layers are unique because of re-
current connections and an excitatory hysteresis current,
as well as the stripe organization connected with a parallel
stripe organization in striatal layers; parietal layers are un-
ique because of the graded and compressive activation
dynamics imposed there; striatal layers are unique because
of their DA-driven reinforcement learning. The posterior
layer is distinct because it contains none of the unique fea-
tures above, but only the more general mechanisms im-
plemented by Leabra and thought to apply to neocortex
in general. Moreover, the connectivity among these layers
is based on known neurobiology (Hazy et al., 2006, 2007,
2010; OʼReilly & Frank, 2006).

Training and Testing

All models were run in batches of 25 networks, and each
network was initialized with random patterns of connection
weights. To compare performance on the 2- and 3-back
tasks, we employed networks with 12 pFC stripes so that
the same networks were capable of learning both tasks,
as the 3-back task seemed to require more working mem-
ory “capacity” than the 2-back task. For all other analyses,
we used a scaled-down model consisting of only six stripes,
both to speed training time and make detailed analyses of
network behavior more tractable.

Training on the 2- and 3-back tasks consisted of activat-
ing 1 of 10 possible input units and the corresponding dis-
tributed representation of serial order in the parietal layer
(each trial corresponds to one of the three serial orders
illustrated in Figure 2B). “Lure” trials, in which the current
stimulus matched a previous stimulus at a non-n lag, were
allowed to occur. “Recent” lure trials are those where the
current stimulus matches the n− 1 stimulus; “Nonrecent”
lure trials are those where the current stimulus matches a
preceding stimulus with a lag larger than n.

Human subjects are instructed on the value of n for each
n-back task they perform. In our simulations, the network
was informed of the value of n by way of a small, probabi-
listic bias to replace stimuli occurring at values of n. This
bias was implemented in the 2-back task by increasing the
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activity level of the go units in the matrix layer on a ran-
dom 10% of the trials in which they had not fired on the
previous trial. Similarly, in the 3-back task, the activity level
of those units was increased on a random 10% of the trials
in which they had not fired on the previous two trials. This
probabilistic bias yields a proportion of trials in which the
pFC is updated with a periodicity of n. For this bias to
yield good performance, the network must not only per-
form correctly on the few trials where this probabilistic up-
dating occurs but must also generalize that behavior across
all trials and stimuli.

For testing, the patterns of activity in the verbal and
manual output layers were recorded after those activity pat-
terns had stabilized or a maximum number of cycles had
occurred (here we use the Leabra default of 60 cycles).
The most active output unit was considered the networkʼs
response, and this output was compared with the correct
output for computing the error statistics described in Re-
sults. Networks were trained in epochs of 500 trials each
until the network was tested to perform above 80% correct
in terms of both its verbal and manual outputs for seven
consecutive epochs. This performance criterion allows
networks to develop individual differences in the range
of those observed in humans: Some networks will perform
substantially better than 80% correct by the end of train-
ing, whereas others may have a shallower learning curve.
For all analyses except those pertaining to learning across
the entire course of training, network behavior is tested
during the final 10% of training.

For individual differences analyses, three batches of 25 net-
works were run with variations in the gain of prefrontal
units (a proxy for tonic prefrontal DA) but the same 25

random seeds were used to initialize weights across each
batch to ensure comparability across model runs. Gen-
eralization was assessed in terms of the verbal responses
in a distinct batch of 25 networks on a randomly selected
set of 10 trial sequences; these 10 trial sequences had
been entirely omitted from the training set. For exam-
ple, the sequence A1X2B1 might have been excluded
from the training set for the 2-back network, where the
intervening “X” stimulus could have been any of the possi-
ble stimuli.
The activation dynamic resulting from training is sche-

matically illustrated in Figure 3 for the 2-back task. The first
trial is a nonmatch trial with input stimulus “A” and serial
order “1” (in Results, this type of trial is represented with
the phrase “A1”). A subset of BG stripes fire (the leftmost
three BG units in Figure 3), resulting in maintenance of
stimulus “A” within a corresponding subset of pFC stripes
(the left-most three pFC units in Figure 3). On the follow-
ing trial, a different subset of BG stripes fire, resulting in
the maintenance of the next stimulus (“D”) within the cor-
responding new subset of pFC stripes. This two-part acti-
vation dynamic repeats across all subsequent trials but is
illustrated for several trials in Figure 3 for clarity, including
a recent lure trial, a non-recent lure trial, and a match trial.
Three-part activation dynamics emerge in networks trained
to perform the 3-back task, such that pFC, parietal, and BG
layers have three distinct activation states (as opposed to
the two distinct states illustrated in Figure 3). The only re-
maining difference in 3-back is that the correct verbal and
manual outputs correspond to matches between the item
presented currently and that presented three trials pre-
viously in the 3-back.

Figure 3. A schematic example
of a trained modelʼs inputs,
outputs, and “hidden” layer
activations on the 2-back
task. Trial 1: The network is
presented with the input A
and a parietal representation
corresponding to serial order 1.
The three leftmost units for
the striatum have learned to
fire on trials with this serial
order and, therefore, gate
the stimulus “A” into the
corresponding units in pFC,
which has learned to represent
“A.” This conjunction of the
item “A” in the stripe that
has learned to represent
information from serial order “1” produces a bound representation that can be termed “A1.” Finally, the network has learned to produce the
verbal output corresponding to the 2-back item (not applicable [n/a] here, because this is the first trial), and the manual output corresponding to
“nonmatch,” because the current item does not match the item presented 2-back. Trial 2: The network is presented with input “D” and serial order 2
is represented in the parietal layer; the right most units in the striatum fire for this serial order, and therefore gate the stimulus “D” into the
corresponding pFC units, producing a bound representation that can be termed “D2.” Trials 3–6: New stimuli are presented, the parietal
layer continues to count off the serial order of the current stimulus, and the striatal layer continues to fire at the appropriate times, thereby
updating pFC with the current stimulus in the correct set of units. The network produces nonmatch responses for all trials except Trial 4,
which is a match trial.
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RESULTS AND DISCUSSION

The Model Captures Benchmark Findings in the
n-back Literature

Our model was capable of de novo learning of both the
2-back and 3-back tasks, without an underlying symbolic
variable system for performing rapid binding. This learn-
ing was not rote, in that all networks generalized to un-
trained sequences at a rate significantly above chance
t(1, 24) = 17.9, p < .001 for 2-back and t(1, 24) =
12.9, p < .005 for 3-back. As described below, the model
also captured numerous benchmark features of human
performance in the n-back task.
One hallmark finding in the n-back literature is reduced

accuracy as n increases from 2 to 3. Themodel also showed
this pattern, such that 2-back accuracy was higher than
3-back accuracy, F(1, 24) = 10.54, p < .005, as shown
in Figure 4A. This result arises from two features of the
n-back: Relative to 2-back, 3-back requires an additional
item be maintained by the prefrontal layers; also, 3-back
involves a less reliable signal of a current itemʼs serial or-
der, owing to the logarithmic compression of the parietal
layer. These two constraints jointly produce lower perfor-
mance on (and also slower learning of ) the 3-back task,
because they diminish the ability of the network to ap-
propriately bind an item to its serial order and to maintain
this binding over subsequent trials.
A second benchmark finding in the n-back literature is

that performance is sensitive to the presence of lures—
items that match a preceding item but not at the critical
n lag. The model also captures this phenomenon, such
that accuracy was significantly lower for recent lures than
non-recent lures (Figure 4B) in both the 2-back, F(1, 24) =
77.2, p< .001, and the 3-back, F(1, 24)= 15.8, p= .001. This
effect reflects interference caused by items in the input,
which match items maintained in memory, albeit with a dif-
ferent temporal order, thereby yielding a tendency for the
network to inappropriately detect a match on lure trials.
Moreover, accuracy is particularly low on recent lure trials
(n − 1), reflecting proactive interference, because the pre-
frontal layers are more likely to represent items with lags

less than n than items with lags greater than n (the latter
are task irrelevant); thus, the network is more prone to
erroneously detect matches in the former case.

One counterintuitive result from the n-back literature is
that the effect of n − 1 lures, relative to the effect of non-
recent lures (i.e., lures at positions > n), is reduced as
n moves from 2- to 3-back (Oberauer, 2005). Although
this effect is counterintuitive—one might expect that the
cost of lure trials on accuracy would increase proportionally
with overall difficulty—the model reproduced the ob-
served result (Figure 4B; F(1, 24) = 18.14, p < .001). Con-
sistent with the modelʼs functioning, this effect reflects
the fact that proactive interference arising from a match
between the current item and maintained items is diluted
when more items are being simultaneously maintained,
as in the 3-back task.

Neuroimaging studies of this kind of proactive interfer-
ence reveal a larger hemodynamic response in the lateral
pFC to recent relative to nonrecent lures ( Jonides & Nee,
2006; Badre & Wagner, 2006; Jonides, Smith, Marshuetz,
Koeppe, & Reuter-Lorenz, 1998). The hemodynamic
response is thought to reflect metabolic demands; fur-
thermore, 50%–80% of the brainʼs energy consumption
reflects the input and output activity of its neurons (Buzsáki,
Kaila, & Raichle, 2007). As an approximation of this met-
abolic demand, we calculated a proxy hemodynamic
response by summing the net input to each unit in pFC,with
each unitʼs contribution to the sum weighted by its net
output. Consistent with extant neuroimaging data on pro-
active interference, our simulated hemodynamic response
was markedly increased in prefrontal layers during recent
lures, relative to nonrecent lures or targets, t(24) = 11.35,
p < .0005 and t(24) = 5.01, p < .001, respectively (see
Figure 5). This result was not due solely to simulated excita-
tory neurotransmission: The same pattern was observed in
terms of net inhibitory input (see Appendix I for details
about inhibitory currents in Leabra), consistent with the-
ories of inhibitory contributions to the hemodynamic
response (Buzsáki et al., 2007) and with the involvement
of inhibition in resolving proactive interference ( Jonides
et al., 1998).

Figure 4. (A) The model
reproduces the benchmark
result of lower accuracy on
3-back than 2-back. (B) The
model shows reduced accuracy
on recent (n − 1) lures, relative
to both nonrecent lures (>n)
and match trials. In addition,
the relative difference of
these trial types is smaller
in the 3-back task than the
2-back task, consistent with
human data.
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The Model Captures Individual Differences in
Human n-back Performance

In addition to capturing the above hallmark phenomena
in the n-back task, we also tested whether the model
captures individual differences. One source of individual
differences is genetic variation related to dopaminergic
functioning, such as the Val158Met polymorphism in the
gene coding for catechol-O-methyl transferase (COMT),
the principal enzyme that degrades DA in the pFC (Boulton
& Eisenhofer, 1998). The low efficiency variant (the met
allele) yields a large net reduction in prefrontal DA me-
tabolism relative to carriers of the higher efficiency val allele
(Chen et al., 2004; Männistö & Kaakkola, 1999). This differ-
ing efficacy results in a higher tonic level of prefrontal DA
in met carriers (Bilder, Volavka, Lachman, & Grace, 2004).

Consistent with the hypothesized inverted U-shaped
curve relating prefrontal DA levels to executive control
(see Mattay et al., 2003), homozygotes for the val allele
perform worse on the n-back than met carriers, either in
terms of performance (e.g., Goldberg et al., 2003) or effi-
ciency (i.e., neural activation required to achieve the same
level of performance; e.g., Egan et al., 2001). Additionally,
met carriers perform worse following pharmacological
manipulations thought to increase prefrontal DA levels,
such as administration of amphetamine (Mattay et al.,
2003). Some recent studies suggest that the effect of the
Val158Met polymorphism on n-back performance is weak,
if it exists at all (e.g., Barnett, Scoriels, & Munafo, 2008).
However, in practice any conclusion about the influence
of COMT polymorphisms is complicated by other unmea-
sured and confounding genetic differences that may also
distinguish val andmet carriers (e.g., linkage disequilibrium
or functional epistasis; Tan et al., 2007; Meyer-Lindenberg
et al., 2006). Biologically constrained computational model-
ing can offer clarity to this situation as a way of testing the
underlying hypothesis that extremes in prefrontal DA

should be associated with worse performance when all
other factors are held constant.
Higher extracellular DA levels are frequently thought to

increase the gain in individual pyramidal cellsʼ activation
function so as to make strongly active cells more active—
an excitatory effect—and weakly active cells less active—
an inhibitory effect (Cohen et al., 2002). The net result
is an increase in signal-to-noise ratio for pFC as a whole
(Winterer et al., 2006; Stefanis et al., 2005; Durstewitz,
Seamans, & Sejnowski, 2000). In this way, individual differ-
ences at the Val158Met locus of the COMT gene might be
hypothesized to produce differences in the relative sharp-
ness of active representations in the pFC. All things being
equal, sharper, sparser representations will promote faster
processing and more robust maintenance in the pFC areas
(OʼReilly & Munakata, 2000). Thus, to mimic the puta-
tive effects of individual differences in COMT function,
we trained models to perform the 2-back task under var-
iations in tonic DAʼs aforementioned (and most widely
hypothesized) influence on pFC: signal-to-noise ratio
(Winterer et al., 2006; Stefanis et al., 2005; Cohen et al.,
2002; Durstewitz et al., 2000). Specifically, we increased
the gain of the sigmoidal activation function on the units
in the prefrontal layers from the default value (from 400 to
600). The gain was also decreased from the default value
as a proxy for reduced levels of prefrontal DA (from 400
to 100).
Results of the simulations indicate that, although none

of these variations in prefrontal DA precluded learning of
the 2-back task to criterion, the final levels of performance
reached by these networks after training conformed to
the expected U-shaped curve, F(1, 24) = 5.25, p = .027
and F(1, 24) = 9.09, p = .006 for target and lure trial
accuracy, respectively (see Figure 6). In our model, the
U-shaped curve arises by rebalancing the flexibility

Figure 5. Recent lures were associated with a greater simulated
hemodynamic response than nonrecent lures and targets, where the
hemodynamic response is simulated as the weighted average of unit
inputs and unit activations in the pFC layers.

Figure 6. As a proxy for the effects of the polymorphisms in the
COMT gene, we manipulated the effects of DA in the prefrontal layers
of the model. This manipulation revealed an inverted U-shaped curve
relating DA levels to performance, consistent with the hypothesized
effects of varying DA levels in pFC.
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stability tradeoff: With low gain/tonic DA, prefrontal
representations are somewhat unstable, but with high
gain/tonic DA, prefrontal representations become some-
what difficult to update. Note that the individual differ-
ences resulting from pFC gain are not unique to n-back
or PBWM; other models positing similar DA effects
in pFC may exhibit similar results (e.g., Chadderdon &
Sporns, 2006; Deco, 2006; Tagamets & Horwitz, 2000),
and as such, this result represents an important point of
convergence across multiple formalisms.
Another source of individual differences in the n-back

relates to the influence of control strategies and response
bias on behavioral performance. Juvina and Taatgen (2007)
showed that subjects encouraged to use a high-control
strategy in this task—that is, to rely on active maintenance
as opposed mere familiarity—show a positive correlation
between accuracy on recent lure trials and on target n-back
trials. In contrast, subjects encouraged to use a low-control
familiarity strategy demonstrate a negative correlation be-
tween these trial types. Because our model includes only
the mechanisms thought to be involved in high-control
strategies, the model should also show this positive corre-
lation. Indeed, we observed a robust positive correlation,
r(73) = .44, p < .0005, between lure and target accuracy
in the 2-back task (Figure 7) performed by models that
varied in their pFC gain parameters (as described in the
previous paragraph). This positive correlation arises be-
cause networks differing in prefrontal gain consequently
also differ in their ability to update and maintain informa-
tion in working memory—abilities that support perfor-
mance on both lure and target trials alike.2

Inside the n-back: How Gating, Binding, and
Resolution of Proactive Interference Occur

As described above, our model captures numerous empiri-
cal phenomena from the n-back task. Crucially, this good

match to empirical data is enabled not by the explicit fit-
ting of parameters but rather by the types of represen-
tations that develop through learning in PBWM. These
representations can be readily understood as instantia-
tions of the very executive functions hypothesized to be
crucial for n-back performance: the need to flexibly up-
date working memory, to bind stimulus representations
to representations of serial order, and to manage proactive
interference. Below, we demonstrate how these func-
tions are accomplished using quantitative analysis of the
modelʼs learning trajectories.

Gating

One principal executive function important for the n-back
task is working memory updating; our model reveals what
form this updating may take as a result of the striatal re-
inforcement learning mechanisms implemented in our
model. In particular, the striatal layers learn to maximize
reinforcement by firing differentially in terms of the serial
order of each stimulus (i.e., 1, 2, or 3) instead of stimulus
identity (i.e., A, B, C, etc.). This policy develops because it
is supported by network connectivity (such that parietal
layers project particularly strongly to striatal layers) but also
because it maximizes reinforcement. Had striatal layers
learn to fire differentially based on stimulus identity infor-
mation (i.e., A, B, C, etc.), then it would be up to prefrontal
layers to learn to represent whether each of those stimuli
had been seen one, two, or three trials ago or not at all,
as would most commonly be the case. Because it is less
efficient to use limited prefrontal resources to represent
stimuli that have not been recently experienced than to
specifically represent those stimuli that have been seen re-
cently, the latter updating policy is what emerges naturally
through reinforcement learning.

The order-based gating striatal policy can be seen in how
the activity patterns of these layers become more discrete
with respect to serial order as training progresses. For-
mally, this change can be quantified as a reduction in en-
tropy (such that lower entropy reflects greater certainty in
which striatal units will be activated by a particular serial
order) over the course of learning, as illustrated in Fig-
ure 8A. Thus, increasingly distinguishable neural patterns
in the BG occur for distinct serial orders as training pro-
gresses, thereby yielding an order-specific gating signal.

The importance of this reduction in entropy can be seen
in its relationship to performance. Although all networks
ultimately reached approximately the same level of updat-
ing ability (i.e., near-zero entropy by the end of training),
differences in accuracy on the task at that final point could
be predicted based on the history of striatal entropy. That
is, networks that were less error prone at the end of train-
ing showed no difference in striatal entropy at that late
point but rather lower striatal entropy only early in training
(as illustrated in Figure 8B). This effect occurs because the
separation of items occurring with different serial orders to
different prefrontal stripes is essential for two subsequent

Figure 7. The model captures the individual differences in the
relationship of lure and target trial accuracy observed empirically when
subjects are encouraged to adopt the same strategy as adopted by
our model.
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developments: the differentiation of items by prefrontal
stripes, and the active maintenance of this information
to resolve proactive interference. Networks that achieve
earlier reductions in striatal entropy have a “head start” in
these subsequent and slow refinements, each discussed
in turn below.

Binding

A stable, order-specific gating signal is a prerequisite for
prefrontal units to learn to differentiate items occurring
with different serial orders—that is, binding, an important
process for n-back performance (Badre & Wagner, 2006;
Oberauer, 2005). The binding that occurs in our model
is distinct from that typically occurring in connectionist
models, which relies on coactivation of shared features.
Our model binds items to serial order in a fundamentally
different way, as described below.

First, the order-specific gating policy developed by
striatal reinforcement learning mechanisms exposes partic-
ular pFC stripes to stimuli occurring with a particular serial
order and other pFC stripes to stimuli occurring with other
serial orders. By itself, this order-specific gating policy does
not suffice for binding; the network must also be able to
differentiate between the stimuli of any given serial order
(e.g., to differentiate an A of serial order 1 from a B of se-
rial order 1). Because this stimulus identity information
is not provided by firing in striatal layers (which is serial
order based), the prefrontal layers must discriminate stim-
ulus identity on the basis of posterior representations. Ul-
timately, this discrimination is accomplished through a
process of representational differentiation supported by
Hebbian and error-driven learning,3 such that each pre-
frontal stripe will learn to discriminate all items occurring
with the serial order that that stripe is preferentially exposed

to (via the order-based striatal gating policy). This progres-
sive differentiation both within and across stripes in pFC
reflects the network emergently learning to bind items to
their serial order.
The nature of the resulting bound representations can

be quantified in terms of the Euclidean distance between
prefrontal activity patterns across the various items and or-
der combinations. This high-dimensional analysis can be
illustrated with a cluster plot in which the y axis represents
item by order combinations, horizontal lines represent the
Euclidean distances between clusters, and cluster member-
ship is indicated by vertical lines. We performed this type
of hierarchical cluster analysis on the activity patterns, both
before and after training, of one pFC stripe that learned to
code for items appearing with one serial order (Figure 9A
and B) and for a different pFC stripe that learned to code
for items appearing with a different serial order (Figure 9C
and D). The resulting figure reveals an initially haphazard
pattern of representational similarity across items by order
combinations (represented as a letter followed by a num-
ber; e.g., “D1”; Figure 9, left). After learning, this disorgani-
zation resolves into a highly structured representational
scheme (Figure 9, right) in which all items occurring with
a nonpreferred serial order for a given pFC stripe are highly
similar, as indicated by very short horizontal lines linking
the items into large clusters. In contrast, items of a pre-
ferred serial order become much more differentiated, as
indicated by the increasingly pairwise clusters.
Thus, reinforcement learningmechanisms drive an order-

based gating policy, whereas Hebbian/error-driven mech-
anisms support representational differentiation within
particular serial orders. These processes jointly give rise to
the active maintenance of item–context bindings in our
model, such that items are bound to their context in terms
of which pFC stripe they are gated into. Our model further
suggests that this binding may occur through a sensitivity of

Figure 8. (A) The model learns to appropriate gate information into working memory by developing increasingly discrete firing patterns in the
striatum over the course of training, here visualized in terms of reductions in entropy. (B) Individual differences in the ultimate post-training
performance of models across runs can be predicted based on the reduction in striatal entropy much earlier in training: networks that ultimately
commit less errors following training (solid vs. dotted lines) show significantly more (*p < .05) discrete patterns of firing between 0 and 10%
of the total training time (vertical bars). Shaded regions represent SEM for each time point.
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the pFC to serial order; indeed, empirical evidence suggests
the pFC encodes information about serial order (Amiez &
Petrides, 2007), and our model demonstrates how such
sensitivity might emerge.

Proactive Interference

As the prefrontal-striatal circuit learns to gate and actively
maintain information about items and their serial order,
the network must also learn to resolve proactive interfer-
ence from lure trials. In essence, the network must produce
responses based on the match or mismatch between the
current stimulus and information that was updated n-trials
previously, while avoiding responses that would be based
on any mapping between the current stimulus and the in-
formation updated and maintained from non-n lag lure
trials. This constraint is at its core a selection problem: The
prefrontal stripe with stimulus identity information for the
current trialʼs serial order—and not stripes with informa-
tion from other serial orders—must convey this information
to the verbal output and posterior cortical layers so that cor-
responding match/nonmatch outputs can be activated.
The network learns to solve this selection problem

through two mechanisms that emerge over learning. First,
the stimulus identity information relevant to the current

trialʼs serial order biases the verbal output unit that corre-
sponds to that stimulusʼs identity, as learned in the weights
connecting that prefrontal stripe and the verbal output
layer. Second, the posterior cortex acts as a kind of com-
parator, such that error-driven and Hebbian learning
mechanisms craft a set of weights in the posterior cortical
layer to detect matches between the stimulus input and
verbal output layers and activate the appropriate manual
output (see Appendix II for more details). The source
of lure errors is, therefore, multicausal: Some errors
(approximately 25%) reflect inappropriate detection of
input–output matches by the posterior cortical area (i.e.,
the verbal output is correct and does not match the cur-
rent stimulus, but the manual output nevertheless indi-
cates a match response). Other errors (approximately
75%) reflect item confusion in the prefrontal layers as a
result of interference from current stimuli, ultimately
leading to the biasing of the incorrect unit in the verbal
output layer (Appendix II provides a detailed analysis of
recent lure errors in the 2-back task, which provides no
evidence for the interpretation that lure errors arise be-
cause of incorrect gating on previous trials).

Figure 10 illustrates that this selection problem is solved
relatively slowly over the course of training, with more
rapid reductions in the proportion of errors that occur

Figure 9. Cluster plots
reflect the Euclidean distance
(indicated by the length of
horizontal lines) between every
item (indicated by letters along
the y axis) and serial order
(indicated by numbers along
the y axis); thus, if the path
from one item to another
requires a large amount of
horizontal travel, then the
representations of those
items are relatively distinct.
(A) One prefrontal stripe shows
an initially haphazard pattern
of representational similarity
across items, as indicated by the
lack of systematic clustering
between items and their order.
(B) After training, the same
prefrontal stripe illustrated in
A develops a highly structured
representation, by collapsing
across all items of serial order 2
(top half of cluster plot) but
differentiating among all items
of serial order 1 (as indicated
by the large horizontal lines
separating each item; bottom
half, enclosed by rounded
rectangle). This stripe is
preferentially tuned to code
items of serial order 1. (C) A different pFC stripe also shows initially haphazard representational similarity. (D) After training this stripe shows a
different pattern than that illustrated in B, in that it collapses equally across all items of serial order 1 (top half of cluster plot) but increasingly
differentiates every item occurring with the other serial order (bottom half, enclosed by rounded rectangle).
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on nonrecent lures and match trials than on recent lure
trials, as well as a lower asymptotic error rate on those
trials. We, thus, observed a relatively protracted develop-
ment of resistance to interference, which is consistent with
new evidence on developmental trajectories in the n-back
(Schleepen & Jonkman, 2010). Our model shows this pro-
tracted development because of an interdependency be-
tween the resolution of proactive interference and other
executive functions: Gating, maintenance and binding con-
trol processes supported by reinforcement learning (in the
case of gating) as well as Hebbian and error-driven learn-
ing must first construct a relatively stable state before those
representations can be incrementally refined to reduce
proactive interference through additional Hebbian and
error-driven learning.

GENERAL DISCUSSION

Here we report a biologically based model of the parieto-
fronto-striatal system that learns to perform the n-back
task, emergently producing representations that support
executive functions like gating, binding, and the resolution
of proactive interference. The modelʼs acquisition of these
functions enables its close match to empirical data, in-
cluding behavioral, genetic, and neuroimaging findings,
without the need for fine-grained tuning of themodelʼs un-
derlying parameters. Specifically, the updating of working
memory is accomplished as the BG learns to provide a
gating signal that is increasingly differentiated by an itemʼs
serial order, quantified above in terms of entropy. Active
maintenance occurs as the pFC learns to bind items and
their serial order, quantified above via hierarchical cluster
analysis. Finally, proactive interference resulting from re-
cent lure trials affects these prefrontal representations via
increases in net input, unit activation, and inhibitory neuro-

transmission, consistent with the increased BOLD response
observed in pFC during proactive interference (Badre &
Wagner, 2006; Jonides et al., 1998). The model also cap-
tures the effect of individual differences in prefrontal tonic
DA, individual differences observed when humans use the
same type of high-control strategy implemented by our
model, as well as decreased overall accuracy and an in-
crease in the relative accuracy of recent lures as n moves
from 2 to 3.
Our model integrates previous work to use an order rep-

resentation in PBWM (as in the phonological loop model
developed by OʼReilly & Frank, 2006) by more firmly root-
ing it in the biology of the IPS (as in Botvinick & Watanabe,
2007) and thereby differentiating the serial order signal
from representations that might be used for dimensions
like color or form. This work extends the phonological
loop model in two important ways. First, the n-back task
differs from the serial recall performed by these models
in that serial order representations must now do “double
duty”—simultaneously supporting the recall of old infor-
mation as well as the storage of new information. Sec-
ond, our model addresses the lack of an explicit external
frame of reference for the representation of serial order
by positing an internally generated one, such that there
is a periodicity relation rather than a strictly serial relation
between successive stimuli. Although the importance of a
self-imposed periodicity function for our model actually
leads to testable predictions, how these representations
might autonomously develop nonetheless remains an im-
portant and unsolved problem.

Insights

Our model also leads to a number of theoretical insights.
First, previous literature suggests that executive functions
show unity and diversity at both behavioral and genetic
levels (e.g., Friedman et al., 2008), but our model may
challenge modular interpretations of this unity and diver-
sity. Executive functions emerge here from an integrated
parieto-fronto-striatal circuit instead of discrete mecha-
nisms involved in only some executive tasks (cf. Cooper
& Davelaar, 2010). Instead, a more emergent view of unity
and diversity may enable a better match to neural mecha-
nisms. Our model also indicates this emergent view will
need to include frontal, striatal, and parietal areas, at the
minimum. Executive functions are often discussed in terms
of frontal, parieto-frontal (e.g., Corbetta, Patel, & Shulman,
2008), or fronto-striatal (OʼReilly & Frank, 2006) substrates,
but theoretical accounts of frontal, parieto-frontal, or fronto-
striatal interactions may be substantially incomplete without
considering all three parts to the larger, integrated net-
work. For example, although executive control might be
considered relatively distinct from abilities like serial order
processing, our model indicates the neural mechanisms
supporting behavior across these domains may be related;
this relationship should be explicitly considered in deter-
mining the role of parietal cortex in updating tasks.

Figure 10. Performance on recent lures trials undergoes a shallower
learning curve than performance on all other trial types, reflecting a
more rapid reduction in error rate on trials that do not require the
resolution of proactive interference (match and nonrecent lure trials
as compared with recent lures).
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However, it is also likely that other areas of parietal
cortex contribute to performance in ways that do not
selectively relate to time or order representations (Collette
et al., 2005), and our model does not encapsulate the only
form of parieto-frontal interaction. These anatomically
and functionally diverse regions (e.g., Rushworth, Behrens,
& Johansen-Berg, 2006) are likely to support multiple
forms of processing. Thus, other computational and theo-
retical models of fronto-parietal function (Edin et al., 2009;
Corbetta et al., 2008; Corbetta & Shulman, 2002) may de-
scribe aspects of the parietal cortex not captured by our
model, and vice versa.
The model also provides insight into the ability to re-

solve proactive interference. Our simulations suggest that
the increased hemodynamic response observed during
recent lures may reflect the presence of interference and
not a separate control process recruited to resolve interfer-
ence. Instead, proactive interference resolution unfolds
as an emergent consequence of the networkʼs learning in
general. That is, proactive interference resolution depends
on striatal gating becoming increasingly specific to serial
orders (which reduces interference across different serial
orders that involved presentation of the same item) and
increased representational differentiation among items of
the same serial order within pFC (which reduces interfer-
ence across different items presented with the same serial
order). However, proxy hemodynamic increases to recent
lures also reflect that a similar preceding item is being
strongly maintained and that the current stimulus is being
fully processed. These multiple facets of the hemodynamic
response to proactive interference may explain the seem-
ingly paradoxical findings that activation of the lateral
pFC positively correlates with fluid intelligence (Gray,
Chabris, & Braver, 2003), which presumably relies on
strong maintenance and full processing of stimuli, but also
positively correlates with behavioral indices of proactive
interference (Nee, Jonides, & Berman, 2007). Our model,
thus, offers one explanation for these apparent contra-
dictions in the current empirical literature.

Predictions and Extensions

Our n-back model also leads to new testable predictions.
First, because the models rely on a periodic serial order
representation, 2-back accuracy should be differentially
disrupted if subjects must simultaneously complete a task
that requires a different periodicity of serial order repre-
sentations (e.g., a three-movement spatial tapping task
relative to a two-movement one). Indeed, serial order
may be important for precisely this type of motor control
(Salinas, 2009).
Second, the neural substrates of self-imposed period-

icity should be identifiable with fMRI, using regressors
whose onsets correspond to a periodicity of n. Striatal ac-
tivation should show the same parametric variation with n
as has been previously observed in the cortex: Our model

predicts these areas form a highly interconnected circuit
modulated by memory demands. Moreover, representa-
tional similarity analysis or other multivoxel pattern analy-
sis methods might reveal the same striatal hemodynamics
reported here in terms of representational differentiation
patterns.

Third, to the extent that humans are capable of good
performance on n > 3-back tasks, they may recruit ad-
ditional mechanisms, such as the hippocampal complex
(HPC), to compensate for the logarithmically compressed
nature of serial order representations in the IPS. Indeed,
the HPC has only been inconsistently observed during
performance of 2- and 3-back tasks (de Frias et al., 2010;
Egan et al., 2003), and other accounts of n-back might
predict HPC involvement only insofar as subjects adopt
a low-control (i.e., familiarity based) strategy ( Juvina &
Taatgen, 2007). In contrast, the current model predicts
high-control strategies will involve additional mechanisms
not modeled here, when n > 3.

This third set of predictions suggests several possible
extensions of the model to capture different strategies and
training effects. The parietal layer is an important constraint
on the ability of networks to perform adequately on n >
3-back tasks, because its tuning curves become increasingly
compressed at higher serial orders. Parietal serial order
representations simply become too compressed at high
levels of n to support discrete representations. Nonethe-
less, because humans are apparently capable of learning
n> 3 back tasks with training, one extension to our model
would be a top–down projection to this area from the pFC.
Over training, the network might learn to support increas-
ingly discrete serial order representations using a top–down
biasing signal (e.g., Edin et al., 2009). Our model might
also be extended to capture the HPC mechanisms possibly
used by subjects adopting a familiarity-based strategy. Con-
ceptually similar mechanisms are used in a symbolic model
of the n-back task ( Juvina & Taatgen, 2007), such that a
“time tagging“ system is integrated with a familiarity sys-
tem that relies on declarative memory. Different control
strategies are then simulated in terms of whether the time
tags are actively maintained (as in our current model) or
retrieved only when familiarity is detected. With the ap-
propriate biological extensions, our model might capture
these and more n-back phenomena.

Our model may be relevant to the burgeoning field of
executive functions training, in which the n-back is play-
ing a prominent role. For example, n-back performance
improves following training on the letter memory task
(Dahlin, Neely, Larsson, Bäckman, & Nyberg, 2008). Our
model is also capable of performing the letter memory
task, and the types of executive functions that emerge in
our model from its training on letter memory are extremely
similar to those reported here. However, in the current
report our models were trained only on the n-back task;
clearly, human performance in any task relies on a longer
and more varied history of experience than the training
we provided to our model. Future work will pretraining
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models on a larger variety of more elemental cognitive
tasks and test transfer effects.

Conclusions and Future Directions

Follow-up work is ongoing, including the more complete
modeling of these and other neural structures with a role
in executive functioning and a more elaborate mapping
of this type of model to behavior in other executive func-
tion tasks. Indeed, the PBWM framework used here can
model a number of other tasks, and the overlap among
these models may reveal the computational origin of
the unity and diversity of executive functions (Friedman
et al., 2008; Miyake et al., 2000). The current work repre-
sents a first step in that direction by specifying a formal
computational link between anatomical connectivity stud-
ies demonstrating a highly interconnected parieto-fronto-
striatal network with studies of genetic polymorphisms
with individual differences at the behavioral level and with
theoretical accounts of the executive functions important
for working memory updating tasks.

APPENDIX I

The Leabra framework used for implementing the model
is described in detail in OʼReilly (2001) and OʼReilly and
Munakata (2000) and summarized here. This framework
has been used in over 40 different models in OʼReilly and
Munakata (2000) and a number of other research models.
The current model, therefore, represents an extension
to a systematic modeling framework using standardized
mechanisms. (The model can be obtained by emailing
the corresponding author.)

Pseudocode

The pseudocode for Leabra is given here, showing exactly
how the pieces of the algorithm described in more detail
in the subsequent sections fit together.

For each event:

1. Iterate over minus (−), plus (+), and update (++)
phases of settling for each event.

(a) At start of settling:

i. For non-pFC/BG units, initialize state variables
(activation, v m, etc.).

ii. Apply external patterns (clamp input in minus, in-
put and output, external reward based on minus-
phase outputs).

(b) During each cycle of settling, for all nonclamped
units:

i. Compute excitatory net input (ge(t) or ηj, Equa-
tion 2) (Equation 21 for SNr/Thal units).

ii. For striatum go/no-go units in ++ phase, com-
pute additional excitatory and inhibitory currents
based on DA inputs from SNc (Equation 20).

iii. Compute kWTA inhibition for each layer, based on

A. Sort units into two groups based on g.
B. If basic, find k and (k + 1)th highest; if

average-based, compute average of 1 → k
and k +1 → n.

C. Set inhibitory conductance gi from g.

iv. Compute point neuron activation, combining
excitatory input and inhibition.

(c) After settling, for all units:

i. Record final settling activations by phase.
ii. At the end of + and ++ phases, toggle pFCmain-

tenance currents for stripes with SNr/Thal act >
threshold (.1).

2. After these phases, update the weights (based on linear
current weight values):

(a) For all non-BG connections, compute error-driven
weight changes (Equation 8) with soft weight
bounding (Equation 9), Hebbian weight changes
from plus-phase activations (Equation 7), and over-
all net weight change as weighted sum of error-
driven and Hebbian (Equation 10).

(b) For PV units, weight changes are given by delta
rule computed as difference between plus phase
external reward value and minus phase expected
rewards (Equation 11).

(c) For LV units, only change weights (using Equa-
tion 13) if PV expectation > θpv or external reward–
punishment actually delivered.

(d) For striatum units, weight change is the delta rule
on DA-modulated second-plus phase activations
minus unmodulated plus phase acts (Equation 19).

(e) Increment the weights according to net weight
change.

Point Neuron Activation Function

Leabra uses a point neuron activation function that models
the electrophysiological properties of real neurons while
simplifying their geometry to a single point. The membrane
potential Vm is updated as a function of ionic conductances
g with reversal (driving) potentials E as follows:

ΔVmðtÞ ¼ τ
X
c

ð gcðtÞ gcðEcÞ−VmðtÞÞ ð1Þ

with three channels (c) corresponding to excitatory input e,
leak current l, and inhibitory input i. Following electrophy-
siological convention, the overall conductance is decom-
posed into a time-varying component gc(t), computed
as a function of the dynamic state of the network, and a
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constant gc that controls the relative influence of the dif-
ferent conductances.
The excitatory net input/conductance ge(t) or ηj is com-

puted as the proportion of open excitatory channels as a
function of sending activations times the weight values:

η j ¼ geðtÞ ¼ ðxiwijÞ ¼ 1
n

X
i

xiwij ð2Þ

The inhibitory conductance is computed via the kWTA
function described in the next section, and leak is a con-
stant. Activation communicated to other cells ( yj) is a thresh-
olded (θ) sigmoidal function of themembrane potential with
gain parameter γ:

yjðtÞ ¼ 1

1þ 1
γ½VmðtÞ− θ�þ

� � ð3Þ

where [x]+ is a threshold function that returns 0 if x < 0
and x if x > 0. Note that if it returns 0, we assume yj(t) =
0, to avoid dividing by 0. To produce a less discontinuous
deterministic function with a softer threshold, the func-
tion is convolved with a Gaussian noise kernel (μ = 0,
σ = 0.005), which reflects the intrinsic processing noise
of biological neurons:

y�j ðxÞ ¼ ∫
∞

−∞
1ffiffiffiffiffiffiffiffi
2πσ

p e−
z2

2σ2yjðz− xÞdz ð4Þ

wherein x represents the [Vm(t) − θ]+ value and yj(x) is
the noise-convolved activation for that value. In the sim-
ulation, this function is implemented using a numerical
lookup table.

kWTA Inhibition

Leabra uses a kWTA function to achieve inhibitory com-
petition among units within a layer (area). The kWTA
function computes a uniform level of inhibitory current
gi for all units in the layer, such that the (k + 1)th most
excited unit within a layer is generally below its firing
threshold, whereas the kth is typically above threshold:

gi ¼ gθkþ1 þ q gθk − gθkþ1

� � ð5Þ

wherein 0 < q < 1 (0.25 default used here) is a parameter
for setting the inhibition between the upper bound of gk

θ

and the the lower bound of gk + 1
θ. These boundary inhibi-

tion values are computed as a function of the level of in-
hibition necessary to keep a unit right at threshold:

gθi ¼ g�e geðEe − θÞ þ gl glðEl − θÞ
θ− Ei

ð6Þ

wherein ge* is the excitatory net input without the bias
weight contribution—this allows the bias weights to over-
ride the kWTA constraint.

In the basic version of the kWTA function, which is rela-
tively rigid about the kWTA constraint and is therefore used
for output layers, gk

θ and gk + 1
θ are set to the threshold in-

hibition value for the kth and (k + 1)th value for the top
most excited units, respectively. In the average-based kWTA
version used here, gk

θ is the average gi
θ value for the top

k most excited units and gk + 1
θ is the average of gi

θ for the
remaining n − k units. This version allows for more
flexibility in the actual number of units active depending
on the nature of the activation distribution in the layer.

Hebbian and Error-driven Learning

Leabra uses a combination of error-driven and Hebbian
learning. Error-driven learning in Leabra is the symmetric
midpoint version of the GeneRec algorithm (OʼReilly
& Munakata, 2000), which is functionally equivalent to
contrastive Hebbian learning. The network settles in two
distinct phases, an expectation (minus) phase where the
networkʼs produces an output and an outcome (plus)
phase where the target output is experienced. The network
then computes the difference of a pre- and postsynaptic
activation product between these two phases. For Hebbian
learning, Leabra uses essentially the same learning rule used
in competitive learning, which can be seen as a variant of
the Oja normalization. The error-driven and Hebbian learn-
ing components are combined additively at each connec-
tion to produce a net weight change.

The equation for the Hebbian weight change is:

Δhebbwij ¼ xþi y
þ
j − yþj wij ¼ yþj xþi −wij

� � ð7Þ

and for error-driven learning using contrastive Hebbian
learning:

Δerrwij ¼ xþi y
þ
j

� �
− x−i y

−
j

� �
ð8Þ

which is subject to a soft-weight bounding to keep within
the 0–1 range:

Δsberrwij ¼ ½Δerr� þ ð1−wijÞ þ ½Δerr�−wij ð9Þ

The two terms are then combined additively with a nor-
malized mixing constant khebb:

Δwij ¼ Î½khebbðΔhebbÞ þ ð1− khebbÞðΔsberrÞ� ð10Þ

PVLV Equations

See Hazy et al. (2010), OʼReilly et al. (2007), and OʼReilly
and Frank (2006) for further details on the PVLV sys-
tem. We assume that time is discretized into steps that
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correspond to environmental events (e.g., the presenta-
tion of a CS or US). All of the following equations oper-
ate on variables that are a function of the current time
step t—we omit the t in the notation because it would
be redundant. PVLV is composed of two systems, PV
(primary value) and LV (learned value), each of which in
turn are composed of two subsystems (excitatory and
inhibitory). Thus, there are four main value representa-
tion layers in PVLV (PVe, PVi, LVe, LVi), which then drive
the DA (DA) layers (VTA/SNc). There are several changes
in the algorithm from this previous work (most notably
the inclusion of the PVr and novelty value (NV) systems;
see Learning Rules below). These changes are efforts to
increase the biological plausibility of the system (e.g.,
removing synaptic depression) and will be discussed in
detail in a future work. The simulations and results de-
scribed in this article were only performed using the PVLV
system described here; the changes to the algorithms de-
scribed here were developed completely independently.

Value Representations

The PVLV layers use standard Leabra activation and kWTA
dynamics as described above, with the following modifi-
cations. They have a three-unit distributed representation
of the scalar values they encode, where the units have pre-
ferred values of (0, 0.5, 1). The overall value represented
by the layer is the weighted average of the unitʼs activation
times its preferred value, and this decoded average is dis-
played visually in the first unit in the layer. The activation
function of these units is a “noisy” linear function (i.e.,
without the x/(x + 1) nonlinearity to produce a linear
value representation but still convolved with Gaussian
noise to soften the threshold, as for the standard units;
Equation 4), with gain γ = 220, noise variance σ = 0.01,
and a lower threshold θ = 0.17. The k for kWTA (average
based) is 1, and the q value is 0.9 (instead of the default
of 0.6 in other layers). These values were obtained by op-
timizing the match for value represented with varying fre-
quencies of 0–1 reinforcement (e.g., the value should be
close to 0.4 when the layer is trained with 40% of 1 values
and 60% of 0 values). Note that having different units for
different values, instead of the typical use of a single unit
with linear activations, allows much more complex map-
pings to be learned. For example, units representing high
values can have completely different patterns of weights
than those encoding low values, whereas a single unit is
constrained by virtue of having one set of weights to have
a monotonic mapping onto scalar values.

Learning Rules

The PVe layer does not learn and is always just clamped to
reflect any received reward value (r). By default we use a
value of 0 to reflect negative feedback, 0.50 for no feedback,
and 1 for positive feedback (the scale is arbitrary). The PVi
layer units ( yj) are trained at every point in time to produce

an expectation for the amount of reward that will be re-
ceived at that time. In the minus phase of a given trial, the
units settle to a distributed value representation based
on sensory inputs. This results in unit activations yj

−, and
an overall weighted average value across these units de-
noted PVi. In the plus phase, the unit activations ( yj

+) are
clamped to represent the actual reward r (a.k.a., PVe). The
weights (wij) into each PVi unit from sending units with
plus-phase activations xi

+, are updated using the delta rule
between the two phases of PVi unit activation states:

Δwij ¼ Îð yþj − y−j Þxþi ð11Þ

This is equivalent to saying that the US/reward drives a
pattern of activation over the PVi units, which then learn to
activate this pattern based on sensory inputs. In addition to
the PVe and PVi layers there is an additional PVr layer that
is associated with learning about reward detection. This
system learns the same way as the PVi system, but has a
slower learning rate for weight decreases relative to in-
creases. The LVe and LVi layers learn in much the same
way as the PVi layer (Equation 11), except that the PV sys-
tem filters the training of the LV values, such that they
only learn from actual reward outcomes or when reward
is expected by the PVr system, and not when no rewards
are present or expected. This condition is as follows:

PVfilter ¼ minðPVr; PViÞ < θmin−maxðPVr;PViÞ > θmax ð12Þ

Δwi ¼ Î yþj − y−j
� �

xþi if PVfilter

0 otherwise

(
ð13Þ

wherein θmin is a lower threshold (0.20 by default), below
which negative feedback is indicated and θmax is an upper
threshold (0.80), above which positive feedback is indi-
cated (otherwise, no feedback is indicated). Biologically,
this filtering requires that the LV systems be driven directly
by primary rewards (which is reasonable and required by
the basic learning rule anyway) and that they learn from
DA dips driven by high PVr expectations of reward that
are not met. The only difference between the LVe and LVi
systems is the learning rate Î, which is 0.05 for LVe and
0.001 for LVi. Thus, the inhibitory LVi system serves as a
slowly integrating inhibitory cancellation mechanism for
the rapidly adapting excitatory LVe system.
Finally, the NV layer signals stimulus novelty and pro-

duces DA bursts for novel stimuli, which slowly decay in
magnitude as a stimulus becomes familiar. The habituation
for this system is simply:

Δwi ¼ −NVxi ð14Þ

The PV, LV, and NV distributed value representations
drive the DA layer (VTA/SNc) activations in terms of
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the difference between the excitatory and inhibitory terms
for each. Thus, there is a PV delta, an LV delta, and an
NV delta:

δpv ¼ PVe − PVi ð15Þ

δlv ¼ LVe − LVi ð16Þ

δnv ¼ NV ð17Þ

The DA system integrates each of these inputs, using a
temporal derivative computation to only produce brief
bursts or dips relative to a baseline level of activation (this
is the primary difference from the synaptic depression
mechanism used in the earlier published version). The
key issue is when to use each of the above values: If pri-
mary rewards are present or expected but not present,
then the PV system dominates, and otherwise, LV + NV
drive it. With the differences in learning rate between LVe
(fast) and LVi (slow), the LV delta signal reflects recent de-
viations from expectations and not the raw expectations
themselves, just as the PV delta reflects deviations from
expectations about primary reward values. This is essential
for learning to converge and stabilize when the network
has mastered the task. These two delta signals need to
be combined to provide an overall DA delta value, as re-
flected in the firing of the VTA and SNc units. One sensible
way of doing so is to have the PV system dominate at the
time of primary rewards, whereas the LV system dominates
otherwise by using the same PV-based filtering as holds in
the LV learning rule:

δ ¼
δtpv − δðt−1Þ

pv

� �
if PVfilter

δtlv − δðt−1Þ
lv

� �
þ δtnv − δðt−1Þ

nv

� �
otherwise:

8><
>: ð18Þ

Special Basal Ganglia Mechanisms

Striatal Learning Function

Each stripe (group of units) in the striatum layer is divided
into go versus no-go in an alternating fashion. The DA
input from the SNc modulates these unit activations in
the update phase by providing extra excitatory current to
go and extra inhibitory current to the no-go units in pro-
portion to the positive magnitude of the DA signal and vice
versa for negative DA magnitude. This reflects the op-
posing influences of DA on these neurons (Frank, 2005).
This update phase DA signal reflects the PVLV systemʼs
evaluation of pFC updates produced by gating signals in
the plus phase. Learning on weights into the go/no-go units
is based on the activation delta between the update (++)
and plus phases:

Δwi ¼ Î xi yþþ − yþð Þ ð19Þ

To reflect the finding that DA modulation has a contrast-
enhancing function in the striatum (Frank, 2005; Nicola,
Surmeier, & Malenka, 2000; Hernández-López, Bargas,
Surmeier, Reyes, & Galarraga, 1997) and to produce more
of a credit assignment effect in learning, the DA modula-
tion is partially a function of the previous plus phase acti-
vation state:

ge ¼ γ½da�þyþ þ ð1−γÞ½da�þ ð20Þ

where 0 < γ < 1 controls the degree of contrast enhance-
ment (0.5 is used in all simulations), [da]+ is the positive
magnitude of the DA signal (0 if negative), y+ is the plus-
phase unit activation, and ge is the extra excitatory current
produced by the da (for go units). A similar equation is
used for extra inhibition (gi) from negative da ([da]-) for
go units and vice versa for no-go units.

SNrThal Units

The SNrThal units provide a simplified version of the SNr/
GPe/Thalamus layers. They receive a net input that reflects
the normalized go/no-go activations in the corresponding
striatum stripe:

η j ¼
P

go−
P

no− goP
goþPno− go

� �
þ

ð21Þ

(where []+ indicates that only the positive part is taken;
when there is more no-go than go, the net input is 0). This
net input then drives standard Leabra point neuron acti-
vation dynamics, with kWTA inhibitory competition dy-
namics that cause stripes to compete to update pFC. This
dynamic is consistent with the notion that competition/
selection takes place primarily in the smaller GP/SNr areas
and not much in the much larger striatum (e.g., Mink,
1996). The resulting SNrThal activation then provides the
gating update signal to pFC: If the corresponding SNrThal
unit is active (above a minimum threshold; 0.1), then ac-
tive maintenance currents in pFC are toggled.

This SNrThal activation also multiplies the per-stripe
DA signal from the SNc:

δj ¼ snrjδ ð22Þ

where snrj is the snr unitʼs activation for stripe j and δ is
the global DA signal.

Random Go Firing

The PBWM system only learns after go firing, so if it never
fires go; it can never learn to improve performance. One
simple solution is to induce go firing if a go has not fired
after some threshold number of trials. However, this
threshold would have to be either task specific or set very
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high, because it would effectively limit the maximummain-
tenance duration of pFC (because by updating pFC, the go
firing results in loss of currently maintained information).
Therefore, we have adopted a somewhat more sophisti-
cated mechanism that keeps track of the average DA value
present when each stripe fires a go:

dak ¼ dak þ Î dak − dak
� � ð23Þ

If this value is <0 and a stripe has not fired go within one
or two trials (in the 2-back and 3-back, respectively), a
random go firing is triggered with some probability (.1).
We also compare the relative per-stripe DA averages, if the
per-stripe DA average is low but above 0, and one stripeʼs
dak is 0.05 below the average of that of the other stripes:

if dak < 0:1
� �

and dak − dai < − :05
	 �

; go
� ð24Þ

a random go is triggered, again with some probability (.1).
Finally, we also fire random go in all stripes with some very
low baseline probability (.0001) to encourage exploration.

When a random go fires, we set the SNrThal unit activa-
tion to be above go threshold, and we apply a positive DA
signal to the corresponding striatal stripe, so that it has an
opportunity to learn to fire for this input pattern on its own
in the future.

pFC Maintenance

pFC active maintenance is supported in part by excitatory
ionic conductances that are toggled by go firing from the
SNrThal layers. This is implemented with an extra excita-
tory ion channel in the basic Vm update Equation 1. This
channel has a conductance value of 0.5 when active. See
Frank, Loughry, and OʼReilly (2001) for further discussion
of this kind of maintenance mechanism. The first opportu-
nity to toggle pFC maintenance occurs at the end of the
first plus phase and then again at the end of the second
plus phase (third phase of settling). Thus, a complete up-
date can be triggered by two gos in a row, and it is almost
always the case that if a go fires the first time, it will fire the
next, because striatum firing is primarily driven by sensory
inputs, which remain constant.

APPENDIX II

Computations Supporting Manual Output: Match
versus Nonmatch Decision

As noted in the main text, the network must learn to pro-
duce not only the correct verbal output (corresponding to
the n-back item) but also a manual output (corresponding
to whether the current item matches or does not match
the n-back item). This match versus nonmatch decision
can be computed by the network simply by comparing
the activation patterns in the input with those in the verbal

output layer and pFC. Indeed, it is precisely this form of
“coincidence detection” that is accomplished by the pos-
terior cortical layer.
We confirmed that “coincidence detection” between

the verbal output layer and stimulus input layer was the
underlying computation performed by the posterior corti-
cal layers as follows. First, we examined those units in the
posterior cortical layer that received strong projections
from corresponding units in the input and verbal output
layers (e.g., large weights from the “A” stimulus in both
layers, or from the “B” stimulus in both layers, as indicated
by a positive correlation of weights from these two layers).
We found that these units projected disproportionately
strongly to the target output response than to the nontar-
get response, relative to those posterior cortical units that
do not show this correspondence of weights (e.g., strong
weights from the “A” stimulus in the input layer but weak
weights from the “A” stimulus in the verbal output layer):
(F(1, 98) = 4.482, p < .05). Thus, the target manual out-
put is driven largely by those posterior cortical units that
are themselves strongly activated by matches between
the input and verbal output layers.
As such, the match–nonmatch decision relies not only

on coincidence detection mechanisms but also on mecha-
nisms supporting activation of the correct verbal output—
a requirement fulfilled by the connectivity of striatal areas
with parietal areas, which trigger the gating of prefrontal
information into the verbal output layer. Thus, the match–
nonmatch response can be seen as a cumulative result of
the networkʼs behavior in total, although it is most directly
supported by weight-based computations occurring in
the posterior cortical layer.

The Underlying Source of Recent Lure Errors

Our approach to identify the source of recent lure errors
was to examine in detail the performance of one network
performing the 2-back task over the final seven epochs of
training. We first determined that the match–nonmatch
decision was typically being performed correctly by the
posterior cortical layer (i.e., detecting matches between
the recalled verbal output and the stimulus present in
the input). Only 25% of recent lure errors reflected a failure
to respond to matches–mismatches between the (correct)
verbal output and stimulus input layers. That is, the pre-
frontal layers recalled the correct information to the verbal
output layer, but the posterior cortical layer incorrectly re-
sponded as though this information matched the infor-
mation presented in the input.
Nonetheless, approximately 75% of recent lure errors

reflected recall of the 1-back instead of the 2-back item in
the verbal output layer. To determine whether item con-
fusion within the relevant prefrontal stripe was to blame
for this incorrect recall, we examined the representational
differentiation among items in prefrontal layers that were
gated on a particular trial, using a similar cluster plot analy-
sis as presented in the main text. In particular, we recorded
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the activations in a prefrontal stripe with a preferred serial
order of 1 across the final seven epochs of training. For each
unit in this stripe, we averaged activations across correct
trials and incorrect trials separately, conditional on the ver-
bal output for that trial and the current trialʼs serial order.
Finally, we constructed separate cluster plots for correct
and incorrect trials to visualize the differentiation of pre-
frontal representations of each item × order combination.
This analysis indicated that stripes demonstrated good

differentiation among items of the preferred serial order
on correct recent lure trials (Figure A1A), but a much more
haphazard pattern of representational differentiation on
incorrect recent lure trials (Figure A1B). Thus, recent lure

errors are associated with increased item confusion within
the prefrontal layers.

In principle, this item confusion within the prefrontal
layers could arise from a gating error. That is, this pre-
frontal stripe may have been gated inappropriately on
the current trial or some other recent trial and been ex-
posed to items of a dispreferred serial order. In this case,
poor differentiation of items would reflect that this stripe
had been updated with information that it was poorly
suited to represent. However, we found no appreciable
differences in the striatal activations between correct
and incorrect trials—neither on the trial where the incor-
rect verbal output was provided, nor on either of the two
preceding trials. Thus, prefrontal stripes were gated simi-
larly on incorrect and correct recent lure trials, as well
as on the trials immediately preceding them, indicating
that gating errors are not a source of the item confusion
occurring on incorrect recent lure trials.

If not because of gating, what could be the source of
the item confusion occurring on incorrect recent lure
trials? We found that the haphazard pattern of represen-
tational differentiation in prefrontal activation states on
incorrect recent lure trials—that is, item confusion—
was paralleled by haphazard patterns of net input to pre-
frontal layers on incorrect recent lure trials. Whereas net
input to prefrontal layers was substantially different in
terms of whether the current trial was of serial order 1
or 2 on correct recent lure trials (Figure A2A), incorrect
recent lure trials showed much more similar net input to
prefrontal layers across trials of serial orders 1 and 2 (Fig-
ure A2B). This result indicates that recent lure errors arise
from an instability of prefrontal activation states indepen-
dent of gating: The clean separation between representa-
tions of items of different serial orders is corrupted on
incorrect recent lure trials, both in terms of prefrontal
activations and net input to prefrontal layers.

We conducted further analyses of representational dif-
ferentiation on the trial preceding incorrect and correct
recent lure trials but found no appreciable differences in
the prefrontal representations on the trials preceding re-
cent lure errors relative to the representations on the
trials preceding correct rejections of recent lures. This sim-
ilarity indicates that the corruption of prefrontal represen-
tations on incorrect recent lure trials is due to the recent
lure itself and not to a corruption of the representation
of the 2-back stimulus occurring before the recent lure.
Our model, thus, indicates that recent lure errors occur
because of a lack of stability of prefrontal representations
to interference arising from the recent lure itself.

In summary, these analyses suggested that recent lure
errors did not arise because of gating problems but rather
because of nonrobust representations in pFC that were
susceptible to interference from incoming stimuli. These
particular representations may have been susceptible to
interference from lures to the extent that they were similar
to the 1-back stimulus, perhaps as a result of Hebbian
learning in the sequences leading up to recent lure errors.

Figure A1. Cluster plots of prefrontal activations on correct (A) and
incorrect (B) recent lure trials. On correct trials, different items of the
preferred serial order for this stripe are well differentiated in prefrontal
activations, as indicated by the relatively long paths interconnecting
items of serial order one (A1, B1, C1, etc.). Items of a dispreferred serial
order are not as well differentiated, as indicated by relatively shorter
paths interconnecting those items (A2, B2, C2, etc.). In contrast, on
incorrect recent lure trials (B), there is a much more haphazard pattern
of differentiation among items in terms of prefrontal activations,
indicative of item confusion.

Chatham et al. 3615



Hebbian and Error-driven Computations
Contributing to Item Differentiation in the
Prefrontal Layers

The binding of items to context in our n-back model re-
lies on two principle developments: the development of
an order-based striatal gating signal as a result of reinfor-
cement learning and the increasing prefrontal differentia-
tion of items occurring with a preferred serial order as a
result of Hebbian and error-driven learning. As discussed
in the main text, the order-based gating policy develops

as a result of reinforcement learning because it is sup-
ported by strong connectivity between the parietal and
striatal layers, but also because it maximizes reinforce-
ment relative to alternative gating policies.
In contrast, increasing representational differentiation

in the prefrontal layers develops via Hebbian and error-
driven learning processes over repeated training experi-
ences. To see why Hebbian and error-driven learning lead
naturally to this kind of representational differentiation,
consider an incorrect trial on the 2-back task, where the
serial order-based gating policy had correctly updated a
prefrontal stripe with the “A” stimulus presented two trials
previously, but the prefrontal representation of this “A”
stimulus is not yet sufficiently distinct from its representa-
tion of other stimuli. This indistinct prefrontal representa-
tion may bias the posterior cortical and verbal output layers
such that the “B” unit in the verbal output layer is ultimately
activated instead of the correct “A” unit. Thus, there will
be a resulting difference in activation states between the
incorrect answer (produced during Leabraʼs minus phase,
as described in Appendix I) and the correct answer (pro-
duced during Leabraʼs plus phase, also described in Appen-
dix I). This difference will lead to an error-driven learning
signal that changes specifically those weights—from the
prefrontal layer that was gated on this trial to the verbal
output and posterior cortical layer with which the prefron-
tal layers are connected—that served to conflate the “B”
and “A” stimuli. In addition, Hebbian learning will further
strengthen connections among those (correct) units that
are simultaneously activated in Leabraʼs plus phase. Iter-
ative learning of this type eventually converges to yield
prefrontal representations that maximally distinguish the
stimuli that any given stripe must represent, so that such
errors are not produced. Thus, because each stripe even-
tually contains representations of items occurring with only
one particular serial order (because of the order-based
gating policy learned by the striatum), error-driven and
Hebbian learning only ever train stripes to maximally dis-
tinguish those stimuli of that preferred serial order.
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Notes

1. We note that the dense interconnectivity of the PBWM archi-
tecture is based on known neurobiology, and is therefore taken as
a given in the current attempt to map from neurobiology to
executive function. Previous work has identified that the intact
striatal and prefrontal mechanisms of PBWM are necessary for
good serial recall performance (OʼReilly & Frank, 2006), of which
the n-back is a particularly demanding variant.

Figure A2. Cluster plots of prefrontal net input on correct (A) and
incorrect (B) lure trials. Although net input to prefrontal layers on
correct recent lure trials (A) was reliably differentiated in terms of
the serial order of the current trial (as indicated by the large cluster
separating items of serial order 2 from those of serial order 1),
net input to prefrontal layers on incorrect recent lure trials (B)
was not reliably differentiated according to serial order. Thus, the
representational differentiation among items of different serial orders
in terms of activation states (Figure A1A and B) was paralleled by
differentiation among items of different serial orders in terms of
net input.
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2. We suggest this effect is intrinsic to the modelʼs emergent
behavior, and not merely epiphenomenal, for two reasons. First, a
more likely result would have been a negative correlation be-
tween the accuracy on lure and target trials, owing to the fact that
Leabra involves the learning of “bias weights” which might pro-
duce the widely-observed tradeoff between hit and false alarm
rate in target detection tasks. Second, this correlation was specific
to networks in the trained state; no significant correlation be-
tween lure and target accuracy was observed following the first
epoch of training (r = .10, ns).
3. Appendix II describes how error-driven and Hebbian learn-
ing cooperate to support representational differentiation.
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