

Handout from Psych 5741/5751
University of Colorado
used with
Judd, C.M., \& McClelland, G.H. (1989). Data Analysis: A Model Comparison Approach. HBJ.

Levers for Multiple Regression (Two Predictors)

To simplify notation, assume that both predictors have been mean deivated so that $\bar{X}_{1}=\bar{X}_{2}=0$. If that is not the case, then replace X_{1} with $\left(X_{1}-\bar{X}_{1}\right)$, etc.

In the general case (i.e., with redundancy), the levers or the diagonal entries of the hat matrix are given by:

$$
h_{i i}=\frac{1}{n}+\frac{X_{1 i}^{2} \sum X_{2}^{2}-X_{1 i} X_{2 i} \sum X_{1} X_{2}}{\sum X_{1}^{2} \sum X_{2}^{2}-\left(\sum X_{1} X_{2}\right)^{2}}+\frac{X_{2 i}^{2} \sum X_{1}^{2}-X_{1 i} X_{2 i} \sum X_{1} X_{2}}{\sum X_{1}^{2} \sum X_{2}^{2}-\left(\sum X_{1} X_{2}\right)^{2}}
$$

If there is no redundancy, then $\sum X_{1} X_{2}=0$, so the above reduces to what we would expect, namely

$$
h_{i i}=\frac{1}{n}+\frac{X_{1 i}^{2}}{\sum X_{1}^{2}}+\frac{X_{2 i}^{2}}{\sum X_{2}^{2}}
$$

For more than two predictors, we will be content to allow the matrix routines in the statistical programs to compute the levers for us.

