Equivalences between Traditional Statistical Tests and PRE/F* of Model C/Model A Comparisons

Traditional Name	Equivalent Test and Comments	Cont. Pred.	Cat(Lev) Predictor	Transform	Chapt 2
One-Sample t-test	SQRT(F ${ }^{*}$ for Simple Model $\mathrm{H}_{0}: \beta_{0}=\mathrm{B}_{0}$	0	0	---	5
Two-Sample t-test (independent)	$\mathrm{SQRT}\left(\mathrm{F}^{*}\right)$ for $\mathrm{H}_{0}: \beta_{1}=0$	0	$\mathrm{B}: 1(2)$ $\mathrm{W}: 0$	---	11
One-Way ANOVA	Omnibus F*	0	$\mathrm{B}: 1(>2)$ $\mathrm{W}: 0$	---	11
Two-Way ANOVA	Omnibus tests for row, col, and interactions	0	$\mathrm{B}: 2(\geq 2)$ $\mathrm{W}: 0$	---	12
n-Way Factorial ANOVA	Many omnibus tests	0	$\mathrm{B}:>2(\geq 2)$ $\mathrm{W}: 0$	----	12
ANCOVA or Equivalence of Regression Models		≥ 1	$\mathrm{B}: \geq 1(\geq 2)$ $\mathrm{W}: 0$	---	13
Simple Regression	$\mathrm{H}_{0}: \beta_{1}=0$	1	0	---	6,7
Multiple Regression (Additive)	Omnibus R2 and individual PRE's	≥ 2	0	---	8
Multiple Regression (Interactions)	Product variables in Multiple Regression	≥ 2	0	---	10
R^{2}, Coef. of Multiple Determination	Omnibus PRE	≥ 2	0	---	8
Coef. of Partial Determination	PRE for l predictor Partial Correlation	≥ 2	0	---	8

[^0]| Traditional Name | Equivalent Test and Comments | $\begin{array}{\|l\|} \hline \text { Cont. } \\ \text { Pred. } \end{array}$ | $\text { Cat(Lev) }{ }^{3}$ Predictor | Transform | Chapt ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Correlation | SQRT(PRE) | 1 | 0 | --- | 7 |
| Point-Biserial Correlation | SQRT(PRE) | 0 | $\begin{aligned} & \text { B: } 1(2) \\ & \text { W: } 0 \end{aligned}$ | --- | 11 |
| Spearman Rho | SQRT(PRE) | 1 | 0 | Ranks | 7,16 |
| Mann-Whitney | isomorphic to 2 -sample t independent | 0 | $\begin{aligned} & \text { B: } 1(2) \\ & \text { W: } 0 \end{aligned}$ | Ranks | 11,16 |
| Kruskal-Wallis | 1-way ANOVA | 0 | $\begin{aligned} & \mathrm{B}: 1(\geq 3) \\ & \mathrm{W}: 0 \end{aligned}$ | Ranks | 11,16 |
| Two-Sample t-test (dependent) | SQRT(F*) for Simple
 Model $H_{0}: \beta_{0}=0$ | 0 | $\begin{aligned} & \text { B: } 0 \\ & \text { W: } 1(2) \end{aligned}$ | $\begin{aligned} & \mathrm{W}_{\mathrm{i}}= \\ & \mathrm{Y}_{\mathrm{i}, 1}-\mathrm{Y}_{\mathrm{i}, 2} \end{aligned}$ | 14 |
| One-Way ANOVA (Repeated Measures) | see Chapt. 14 | 0 | $\begin{aligned} & \text { B: } 0 \\ & \text { W: } 1(\geq 3) \end{aligned}$ | W's | 14 |
| Two-Way ANOVA (Rpeated Measures) | see Chapt. 14 | 0 | $\begin{aligned} & \text { B: } 0 \\ & \text { W: } 2(\geq 2) \end{aligned}$ | W's | 14 |
| Between-Within ANOVA | see Chapt. 14 | 0 | $\begin{aligned} & \text { B: } 1(\geq 2) \\ & \text { W: } 1(\geq 2) \end{aligned}$ | W's | 14 |
| Sign Test or Wilcoxon | isomorphic to 2 -sample t (dependent) | 0 | $\begin{aligned} & \text { B: } 0 \\ & \text { W: } 1(2) \end{aligned}$ | Ranks | 16 |
| Friedman | isomorphic to 1-way ANOVA (repeated) | 0 | $\begin{aligned} & \text { B: } 0 \\ & \mathrm{~W}: 1(\geq 3) \end{aligned}$ | $\begin{aligned} & \text { Ranks \& } \\ & \text { W's } \end{aligned}$ | 14,16 |
| Chi-Square | none | -- | --- | --- | --- |

[^1]
[^0]: ${ }^{1} B$ represents "between-subject" categorical variables and W represents "within-subject" categorical variables. The number in parentheses is the number of levels of the categorical variable.
 ${ }^{2}$ Chapter reference to Judd and McClelland (1989).

[^1]: ${ }^{3} \mathrm{~B}$ represents "between-subject" categorical variables and W represents "within-subject" categorical variables. The number in parentheses is the number of levels of the categorical variable.
 ${ }^{4}$ Chapter reference to Judd and McClelland (1989).

