Equivalences between Traditional Statistical Tests and PRE/F* of Model C/Model A Comparisons

Traditional Name	Equivalent Test and	Cont.	Cat(Lev)1	Transform	Chapt ²
	Comments	Pred.	Predictor		
One-Sample t-test	SQRT(F*) for Simple	0	0		5
	Model H ₀ : $O = B_0$				
Two-Sample t-test (independent)	SQRT(F*) for H ₀ : $_1 = 0$	0	B: 1(2) W: 0		11
One-Way ANOVA	Omnibus F*	0	B: 1(>2) W: 0		11
Two-Way ANOVA	Omnibus tests for row, col, and interactions	0	B: 2(2) W: 0		12
n-Way Factorial ANOVA	Many omnibus tests	0	B:>2(2) W: 0		12
ANCOVA or Equivalence of Regression Models		1	B: 1(2) W: 0		13
Simple Regression	H ₀ : $_1 = 0$	1	0		6,7
Multiple Regression (Additive)	Omnibus R ² and individual PRE's	2	0		8
Multiple Regression (Interactions)	Product variables in Multiple Regression	2	0		10
R ² , Coef. of Multiple Determination	Omnibus PRE	2	0		8
Coef. of Partial Determination	PRE for 1 predictor	2	0		8
Partial Correlation	SQRT(PRE) 1 predictor	2	0		8

 $^{^{1}}$ B represents "between-subject" categorical variables and W represents "within-subject" categorical variables. The number in parentheses is the number of levels of the categorical variable.

²Chapter reference to Judd and McClelland (1989).

Traditional Name	Equivalent Test and	Cont.	Cat(Lev) ³	Transform	Chapt ⁴
	Comments	Pred.	Predictor		
Correlation	SQRT(PRE)	1	0		7
Point-Biserial Correlation	SQRT(PRE)	0	B: 1(2) W: 0		11
Spearman Rho	SQRT(PRE)	1	0	Ranks	7,16
Mann-Whitney	isomorphic to 2-sample t independent	0	B: 1(2) W: 0	Ranks	11,16
Kruskal-Wallis	1-way ANOVA	0	B: 1(3) W: 0	Ranks	11,16
Two-Sample t-test (dependent)	SQRT(F*) for Simple Model H ₀ : $_{O} = 0$	0	B: 0 W: 1(2)	$W_i = Y_{i,1} - Y_{i,2}$	14
One-Way ANOVA (Repeated Measures)	see Chapt. 14	0	B: 0 W: 1(3)	W's	14
Two-Way ANOVA (Rpeated Measures)	see Chapt. 14	0	B: 0 W: 2(2)	W's	14
Between-Within ANOVA	see Chapt. 14	0	B: 1 (2) W: 1(2)	W's	14
Sign Test or Wilcoxon	isomorphic to 2-sample t (dependent)	0	B: 0 W: 1(2)	Ranks	16
Friedman	isomorphic to 1-way ANOVA (repeated)	0	B: 0 W: 1(3)	Ranks & W's	14,16
Chi-Square	none				

 $^{^{3}}$ B represents "between-subject" categorical variables and W represents "within-subject" categorical variables. The number in parentheses is the number of levels of the categorical variable. 4 Chapter reference to Judd and McClelland (1989).