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Brief Lecture Notes
Chapter 9:  Outliers

Until now, DATA have been well-behaved
In Chapt 16 we will deal with ill-behaved data with
heterogeneous variances, non-normal distributions,
etc.  Here:

We noted in Chapt 2 that SSE and estimators which
minimize SSE are very sensitive to outliers or wild
observations.  We had best make sure we don't have
any outliers.  With outliers, regression estimates can
be very  misleading.

Outliers are extreme observations that for one
reason or another do not belong with the other
observations in DATA.  (vague!)

Why they are a problem:

bias or "grab" parameter estimates
inflate SSE, thereby making it difficult to detect
reductions in SSE due to other factors
often not obvious that this has happened

example from Chapter 2:

1  3  5  9  14   mean = 6.4, MSE=s^2 = 26.8 [0, 12.8]
1 3 5 9 140  mean=31.6, MSE=s^2=3680.8

[-43.7,106.9]
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Causes:

1.  "Klinkers"  (Abelson)  data recording or data
entry errors.  use of computers make these more
likely.  Lou's energy study example.  Should always
be fixed.  Need computers to help look for them.

2.  Two kinds of cases.  (or errors from two bags of
error tickets)  Math score example from Ex 5.2, p. 74
(typo, book says Ex 4.2).  Outliers can provide clues
to better MODELs.  Need techniques for finding
outliers so they can be examined with great care.

3.  Thick tails of error distributions.  Robust to non-
normality but not thick tails, Ex. 9.1, p. 210.  With
thick tails, extreme observations occur more
frequently than they should.

What to do about outliers?
CONTROVERSIAL!

ignoring them is never acceptable.  to do nothing is
the equivalent of making a decision about their
appropriateness in the analysis.  will often end up
with MODEL that describes essentially none of the
DATA—neither the outliers nor the bulk of the DATA

report MODEL with and without outliers included
do analysis to see if outliers significantly different
from others in MODEL
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Examples:
do Abelson example (if not done earlier)

HSRANK and SAT example

Outlier Questions:

1.  Is X (or the set of predictors) unusual?

2.  Is Y unusual (relative to MODEL of other DATA)?

3.  Does Y have a big impact on predictions of other
Y's?  I.e., does it have big impact on parameter
estimates?

Do questions in order:

Is X (or the set of X predictors) unusual?

leverage
illustrate with X-Y graph

we usually write:

ˆ Y i = b0 + b1X i1 + b2 Xi2 +

but alternatively and equivalently, could write

ˆ Y i = hijj=1

n∑ Y j

(Note: this is really why called linear model)
The h's are entirely determined by the X's.  If we
know X's, we can compute h's even before we collect
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the DATA!  Equation separates info about X from info
about DATA.
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LEVERAGE is how much an observation influences its
own prediction.  LEVER = h ii.

For mean LEVER =  h ii = 1/n

For simple regression:

hij =
1
n

+
(X

i1 − X 1 )(X
j1 − X 1 )

SSX

So LEVER =

hii =
1
n

+
(Xi1 − X 1 )2

SSX

For Multiple Regression with two predictors LEVER =

hii = 1
n

+ X1i
2 X2

2∑ − X1i X2 i X1X2∑
X1

2∑ X2
2∑ − X1X2∑( )2 + X2 i

2 X1
2∑ − X1i X2 i X1 X2∑

X1
2∑ X2

2∑ − X1X2∑( )2

(assuming mean deviation form for both predictors).
If there is no redundancy, then this reduces to

hii =
1
n

+
X1i

2

X1
2∑

+
X2 i

2

X2
2∑

(Illustrate with two-sample t-test?)
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Evaluating LEVERs

0 ≤ h
ii

≤ 1

h
ii

i=1

n

∑ = PA ⇔ h 
ii

= PA

n

Tells us how much of a parameter is dedicated to the
prediction of a single observation!

1/h "equivalent number of observations" involved in
the determination of Yhat.

(e.g., for two-sample t-test, half obs for Yhats from
one group and half the obs for Yhats in the other
group)

___________________________________________________
Is Y i Unusual?

ei = Y i − ˆ Y i

Difficult to interpret
1.  need standardization
2.  paradox in allowing outlier to determie model

really want to ask if Y k is unusual WRT to a MODEL
based on all the other observations

such a statistic is the studentized deleted residual
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rationale:  Outlier Model

MODEL A:   Y i = 0 + 1X i + i  i ≠ k

                    Yi = 0 + 1Xi + 2 + i    i = k

MODEL C:   Y i = 0 + 1 Xi + i  ∀i

OR, equivalently,

X2 = 1,  if k - th observation; 0  otherwise

A:    Y i = 0 + 1X1 + 2 X2 + i

C:    Y
i
= 0 + 1X1 +

i

Example:
leaving out 6th obs

SAT = 6.71 + .50 HSRANK + 55.49 X[6]
SAT = 96.55 - .50 HSRANK

PRE = .68,  F*[1,10] = 21.4,  p < .01

- - - - - - - - - - - - - - - - - - - - - - -
leaving out 1st obs

SAT = 95.71 - .48 HSRANK - 10.67 X[1]
SAT = 96.55 - .50 HSRANK

PRE = .096,  F*[1,10] = 1.06, n.s.
(see Ex 9.6, p. 223)
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don't have to do separate regressions

F* =
ei

2 (n − PA −1)
SSE(1− h

ii
) − e

i

2

won't do by hand, but just remember that all the
information is available from the original regression
so they are cheap to get---so look at them!

cutoffs:
  -2, +2  deserve a look
   -3,+3  require a check
    -4,+4 all alarm bells!

___________________________________________________
3.  Does Yk affect other predictions? (i.e., the
parameters?)

Cook's D

Dk =
( ˆ Y 

i
− ˆ Y 

i,[k ] )
2

i∑
PA(MSE)

Again, everything we need is available so don't have
to re-do regression n times, each time leaving out a
different variable:
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Dk =
ek

2

PA(MSE )
hkk

(1− h
kk

)2

 
  

 
  

Interaction interpretation:
big effect when both X unusual AND Y unusual

       little effect if either X or Y is very usual

cutoffs:
   gaps
   bigger than 1 or 2

do Anscombe's example
   p. 232

partial regression plots


