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Unification of psychophysical phenomena:
The complete form of Fechner's law

KENNETH H. NORWICH and WILLY WONG
University of Toronto, Toronto, Ontario, Canada

Many of the laws and empirical observations of fundamental psychophysics can be unified with a
single equation, which has been called the complete form ofFechner's law. It can be shown that this
law embraces both of the commonly used forms: Stevens's and Fechner's laws. It assumes one or the
other form with appropriate values of the parameters. However, the complete equation confers an ad­
vantage beyond simply containing the classical laws. It offers greater flexibility in the representation
of experimental data. It is shown that psychophysical phenomena may be represented by any number
of triplets of quantities: subjective magnitude of stimulus, subjective just noticeable difference (jnd),
and differential threshold. Each of the preceding quantities are functions of the physical magnitude of
the stimulus. The investigator has the license to choose two of these quantities in the form he or she
thinks is best; the third quantity is determined by the choice of the first two. Thus, for example, differ­
ent forms of the law of sensation and different forms of the mathematical function for differential
threshold may coexist with equal validity.

A primary aim ofthis paper is to show that when Fech­
ner's law is written in its expanded or informational form,
it bestows upon psychophysics a certain unity of charac­
ter. That is, a number ofostensibly disparate phenomena
can be related one to the other. This thesis will be demon­
strated largely with respect to the sense ofaudition. Hence,
the expanded form ofFechner's law will assume the form
of a loudness function.

Fechner obtained the law that bears his name by assum­
ing the validity ofWeber's law, which stated that the frac­
tion AI/I, the intensityjust noticeable difference ([jnd] or
differential threshold) divided by the pedestal intensity, is
equal to a constant. He further assumed that the subjec­
tive jnd, which we shall represent here by AL, is also con­
stant. Combining these two assumptions, Fechner was
able to formulate a differential equation, which he then in­
tegrated or summated to give his famous law. By so
doing, he had postulated that the law of sensation, which
takes the general form ofL = f(I) (in our case, loudness
is equal to some function ofstimulus intensity), can be re­
garded as the sum of constituent jnds. Or, conversely, if
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the loudness function is regarded in the Fechnerian man­
ner as a sum ofjnds, then, by differentiating this function,
we obtain an expression for the Weber fraction.

In this paper, we shall reverse the order ofactivity. We
shall begin with a form of the law of sensation (in this
case, the loudness function), which we term the complete
form ofFechner's law, and differentiate it to obtain the
Weber fraction. However, the Weber fraction derived from
the expanded form ofFechner's law is not exactly the one
that Weber obtained. As intensity increases, the Weber
fraction declines toward a plateau, which can be regarded
as Weber's constant. It is, in fact, the type of curve mea­
sured by Riesz (1928), shown in Figure 1, for the differ­
ential threshold of the intensity of sound. Moreover, we
shall not hold the subjective jnd to be constant, as Fechner
did. Rather, we shall permit it to vary as a function ofstim­
ulus intensity. None ofthese ideas are, in themselves, new.
What is, perhaps, unfamiliar is the process of regarding
variations in the law of sensation, the differential thresh­
old and the subjective jnd together-that is, permitting
these three quantities to change in unison.

The history of the "1 + yI" variation on Fechner's law
may extend back to the time of Fechner himself. Helm­
holtz (1856-1866/1924) suggested an expansion ofFech­
ner's original law, as did Delboeuf (1873) (see Murray,
1993). The Delboeuf modification of Fechner's law as­
sumed the form

(1)

where In is the result of internal neural activity.
We do not know the details ofDelboeuf's derivation of

Equation 1 (0. 1.Murray, personal communication, August
1996; Nicolas, Murray, & Farahmand, in press). How­
ever, one might derive his equation from Fechner's law in
the following fashion: Beginning with
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(7)

equation was later used by Bekesy (1960) to account for
the auditory Weber fraction data ofKnudsen. Some elab­
oration on this historical material may be found in the
Discussion section below.

The term "complete form of Fechner's law" was also
the title ofa paper by Nutting (1907). Nutting, in his analy­
sis of the visual Weber fraction data of Konig, derived
the following expanded form of Fechner's equation in
large part empirically:
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where Lo and Pm are constants.

We shall see that the complete form of Fechner's law,
when approximated for certain values of its parameters,
gives rise to a power law. That is, ifwe regard an expres­
sion for summated jnds as a law of sensation, then the
complete form ofFechner's law "contains" Stevens's law.
Other parameter values will make the complete law look
like Fechner's original logarithmic law. Thus, the com­
plete form of the law can take on three countenances.

In Appendix A, we shall discuss the relationship be­
tween constant and nonconstant jnds and the loudness
function. We shall also see that, by relaxing our criteria
for a standard method ofmeasuring sensation, many types
of measured Weber fraction other than Riesz's can be
brought under the umbrella ofthe complete Fechner law.
For example, we can embrace the "near-miss" of McGill
and Goldberg (1968).

Since loudness data conform more closely to the power
law, we shall often use this form ofthe law. A simple cal­
culation using the power function exponent as a function
of frequency of tone will suffice to derive a theoretical
set of equal loudness contours. These derived contours
will be compared with the empirical contours measured
by Robinson and Dadson (1956).

THE COMPLETE FORM
OF FECHNER'S LAW

The complete form of Fechner's law is very similar to
the one described by Nutting. We write it here in the form

L = tkln (1+r' In), (8)

where L is loudness, I the intensity of sound expressed as
power, and k, r', and n are constants. In recent years, we
have been able to provide a physical interpretation ofEqua­
tion 8. The loudness, L, can be regarded as an entropy­
that is, as the information content of a tone of intensity,
I. The factor of Y2 remains in the equation as a label from
its informational heritage. The reader interested in the
informational theory is referred to the recent monograph
by Norwich (1993). However, for present purposes, we re­
quire only the mathematical form of Equation 8, not its
informational interpretation.

One should not feel alienated by Equation 8. It is, re­
ally, just an amalgam of the two familiar laws of sensa-

(3)
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o

L = klog(Isignal)' (2)

we assume that Isignal is actually a sum oftwo signals, the
external signal, I, and the signal, In , due to "internal causes
quite distinct from any external causes" (Nicolas et al.,
in press). Hence,

Sound intensity (dB SL)

Figure 1. Weber fraction data of Riesz plotted at different fre­
quencies using his empirical Equation 16 and parameters in
Equations 17, 18, and 19. Intensity values are kept well below
physiological saturation levels. Please see Appendix B with re­
gard to sensation level.

One problem with this equation is that the larger Ingets,
the larger L becomes, which is not correct. In interferes
with the subject's ability to sensate, so L should not get
larger. The other problem is that for I = 0, L =1= O. How­
ever, from experience, we know that loudness is zero in
the absence ofexternal signals. Hence, we might modify
Equation 3 by subtracting off the loudness due to inter­
nal activity alone:

L = klog(I + In)- klog(In)

=klOg(I;n
In

)=klOg(I+IIIn). (4)

Lehmann (1905) described Fechner's function

E = clog(R/Ro),

Ro = constant (e.g., absolute threshold) (5)

as "incomplete" (in German unvollstiindig) and proposed
the "complete" neurophysiological equation

E =clog (1 + ~ ). (6)

where E is sensation (in German Empfindungen), R is
stimulus magnitude, c and x are constants> O. The same
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tion, Fechner's and Stevens's. When y'In » I, we see
immediately that Equation 8 becomes

L = tknln[ + tkln y', (9)

which is Fechner's law, since Yzkn and Yzkln y'are con­
stants. When y'r« I, a Taylor series expansion ofEqua­
tion 8 leaves to first-order terms just

L=tky'[n, (10)

which is the usual power law ofsensation championed by
Stevens. The exponent, n, has often been assigned the
value of0.3 whenIis the intensity ofa 1000-Hz tone, ex­
pressed as power. Equation 8, the complete or parent law
ofsensation, embraces collectively the two daughter laws.

in the interests ofobtaining a simple function for 1. More
realistically, threshold must be represented probabilisti­
cally, perhaps using signal detection theory, but leading to
a considerable increase in complexity.

In Figure 2, we have plotted the loudness function given
by Equation 13, with parameter values k = 997.4, Y =
1.861 X 10-4, and n = 0.27, together with the measured
loudness data ofR. P. Hellman and Zwislocki (1961). It
may be seen that the theoretical loudness function con­
forms very closely to the measured data.

INTENSITY DISCRIMINATION

Differentiating the loudness function, Equation 13, we
obtain

INTRODUCING THE
THRESHOLD OF HEARING

Ifwe choose to express sound intensity in units ofdeci­
bel sensation level (SL), it might be convenient to rewrite
Equation 8 as

(14)
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111 = 211L [I +1-( I thresh )n]. (15)
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Rearranging for dI/ I, and replacing the differential quan­
tities by their respective finite differences, we obtain

Sound intensity (dB SL)

Figure 2. The loudness data of HeUman and Zwislocki (1961)
as fitted by the loudness Equation 13 (smooth curve). See Appen­
dix B with respect to sensation level.

This step is a good approximation if 111/[« 1. Experi­
mental data show that this approximation holds for large
[but weakens as I approaches the threshold.

It is important to note that Equation 15 can be derived
from either Equation II or Equation 13, since the two
equations differ only by an additive constant-namely,
- Yzkln(1+y).

(13)

L=-tkln[l+y(_[_)n], (II)
[thresh

where [thresh is the threshold intensity, and y is a new
constant.

By assumption, k is a constant, independent ofboth in­
tensity and frequency. However, the parameters y, n, and
[thresh are all frequency dependent, as we shall see in the
following section.

The loudness equation is valid only for sound intensity
above threshold and below physiological saturation lev­
els. To account for effects near threshold, we introduce a
small correction to Equation II. Since no response is pos­
sible until a threshold is reached, we might incorporate
the threshold in the following manner:

L = {L - L thresh' L> L thresh (12)
0, otherwise '

where Lthresh, the loudness threshold, is obtained from
Equation II by setting I = [thresh' Combining Equations II
and 12, we can now write for the loudness function

for ~ [thresh.

When [-7 [thresh' L -7 0, as required. Notice that no
new parameters are added to the equation-the loudness
threshold is obtained in terms of the existing parameters
k and r Threshold has been treated deterministically here
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Riesz used the symbol r in place ofour n. These three em­
pirical parameters encode the measured dependency of
the Weber fraction on frequency. Therefore, when intro­
duced into the loudness function, which is the integrated
form ofthe Weber fraction, these same three parameters en­
code the dependency ofloudness on frequency- a depen­
dence that may be used to obtain equal loudness contours.

The exponent n in Equation 16, which has previously
been identified with the power function exponent ofloud­
ness, can now be checked for numerical consistency. For
the 1000-Hz curve, Riesz obtained a value of0.2764, which
compares favorably with the exponents obtained from
1000-Hz loudness data. For larger values of frequency,

On the left side ofEquation 15 is the fractional change
in sound intensity; hence, Equation 15 is an expression
of the Weber fraction. Since AL represents a change in
loudness sensation resulting from the intensity increment,
we can therefore take AIas measuring the change in sound
intensity required to produce one jnd in loudness AI.

Utilizing Fechner's conjecture of the constancy of the
loudness jnd (constant with respect to variations in sound
intensity), we set AL constant (please see Appendix A).
Rewriting Equation 15 by setting S~ = 2AL/ nk, and (So ­
S~) = 2AL/nky, both of which are constant for a given
frequency, we obtain

~I =S~+(So_s~{Ith~eshJ, (16)

(21)
nkS~

AL = -2-'

and

TOWARD THE UNIFICATION
OF PSYCHOPHYSICS

y=~. (22)
So-S~

AL is the magnitude ofthe loudness jnd. Since, by as­
sumption, k is a constant independent offrequency, while
n and S~ depend on frequency, it may therefore be seen
from Equation 21 that, when interpreted by Riesz's mea­
surements, AL changes with frequency. In Figure 3, we
plot AL/k and yas functions of frequency. Notice that
the loudness jnd is smallest in the 1-2 kHz region, as
might have been expected, since human hearing is most
sensitive in that region.

Riesz's values differ somewhat from values ofn measured
by other methods.

Rewriting Equation 15 as

AI = 2AL + 2AL (Ithresh )n (20)
I nk nky I '

and comparing Equation 20 term by term with Equation 16,
we see that

Weber Fraction
Riesz (1928), as we have seen, measured Weber frac­

tions that decline with increasing stimulus intensity to a
plateau or constant value. McGill and Goldberg (1968) in
their well-known "near-miss" paper found that the Weber
fraction declined as intensity to the power 0.095 but did
not plateau. That is, AIl1°.905 = constant. Jesteadt, Wier,
and Green (1977) reported various measures ofthe Weber
fractions that declined monotonically with powers as high
as about 0.13. That is, Alllo.87 = constant. Different ex­
perimental techniques will generate different forms ofthe
Weber fraction curve (e.g., Viemeister, 1988). Different
statistical criteria for measuring the jnd will produce dif­
ferent magnitudes of the differential threshold, AI, and,
hence, different values for the Weber fraction.

Psychophysics currently enjoys a multiplicity offunc­
tional forms representing what are ostensibly the same
psychophysical function. The examples below are drawn
from the literature on audition.

Loudness
The standard loudness curve endorsed by ISO R131­

1959 (e.g., Scharf, 1978) is similar to the one shown in
Figure 2. It is usually prepared by the method of magni­
tude estimation and production and is related to the sone
scale ofloudness. However, there is a good deal of inter­
subject variability, as seen particularly in the data of
McGill (1960). Recently, West (1996), West and Ward

(17)

(18)
193

So = 0.3+0.0003f+-,
fo. 8

244,000

(358,000fo.125+j2)

where So-S~ must exceed zero, since 2ALInkyconsists
only of factors greater than zero.

This equation is now identical in form to the empiri­
cal equation used by Riesz (1928) to fit his Weber frac­
tion data and is similar to the expression derived by Siebert
(1968) using a model based on single auditory nerve fiber
activity. The Weber fraction takes on the value So when
I assumes its threshold value and approaches S~ as I be­
comes large. As Equation 16 shows, AII I starts high (i.e.,
So) for small I values and progressively decreases toward
a lower asymptote or plateau (i.e., S~) as I increases.

Riesz used the method of beats or amplitude modula­
tion to measure the Weber fraction. Although his results
have differed from measurements made by other experi­
mental techniques, Riesz's experiments have been vali­
dated by Harris (1963) and more recently by Ward and
Davidson (1993).

Riesz measured Weber fraction curves for different fre­
quencies, and he expressed his three constants So, S~, and
n as empirical functions of frequency.j,

126
S~ = 0.000015f + ,

80fo. 5+f
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Figure 3. (A) Plotting the loudness jnd as a function of frequency from the data of Riesz (1928). Riesz's data have been inter­
preted as derivatives ofthe loudness function, providing the value ofthe jnd from Equation 21. By assumption, k is a constant in­
dependent of both intensity and frequency. The function shows a minimum at 1-2 kHz, corresponding to the most sensitive region
of normal human hearing. (8) Using the data of Riesz, 'Yfrom Equation 22 is plotted. Notice that 'Y« 1 throughout the entire fre­
quency range. .y (l.e., 'Yat 1000 Hz) never differs from 'Ymax or 'Ymln by a factor greater than 2.5.

(1994), and Marks, Galanter, and Baird (1995), follow­
ing up on earlier investigators, have demonstrated that sub­
jects can be trained to produce loudness curves that-con­
form to a specified format. That is, for tones of 1000 Hz,
subjects may produce an excellent loudness curve with
an exponent halfor double the standard value ofabout 0.3.
These constrained curves are, however,perfectly legitimate
maps of loudness onto sound intensity.

Magnitude of the Subjective jnd
Fechner assumed that the subjective jnd, represented

here by I).L, was constant for all loudness levels. However,
Fechner's conjecture has been tested quantitatively by many
investigatorsin recent yearsbeginning,perhaps, with Stevens
in 1936, who calculated that the magnitude of the jnd in­
creased with increasing loudness (as the 1.2 power ofthe
cumulative number ofjnds above threshold [please see also
Appendix A and Discussion sectionD. More recently,Krue­
ger (1989) again raised this possibility, and W S. Hellman
and R. P. Hellman (1990) and others have calculated that
the subjective jnd increases as the square root of'loudness.'

A degree ofunity can be conferred on the world ofpsy­
chophysics, however, if we recognize that the Weber
fraction (or differential threshold, 1).1), loudness, L, and
subjective jnd, I).L, are interrelated. Ifeach ofthese quan­
tities is regarded as a function ofonly the variable, I, then
the three quantities form sets of three related quantities,
any two ofwhich imply the third. To take a simple exam­
ple from physics, one may define the unit oflength and the
unit oftime by taking any two ofthe following three stan­
dards: a standard unit oflength, a standard unit of time,
and a standard speed oflight in vacuo. For example, given

the standard meter and the standard second, we can spec­
ify the speed of light in meters per second; or, given the
speed of light in meters per second and the standard sec­
ond, we can specify the length of the standard meter.

A key to the formulation ofconsistent sets ofthe three
quantities, L, I).L, and 1).1, may be the complete form of
Fechner's law, Equation 13 and its differential forms,
Equation 14 and Equation 15. There are three possible
combinations of the three quantities. Given L (i.e., the
parameters k, n, y, and Ithresh in Equation 13, and I).L, we
can find 1).1 using Equation 15. Given Land 1).1, we can
find I).L using Equation 15. Given 1).1 and I).L as func­
tions of I, we can find L by substituting these values into
Equation 15 and curve-fitting for the parameters k, n,
and so on. That is, any two quantities imply the third. How­
ever, to use this unifying procedure universally, we must
relax our demands for a fixed form ofthe loudness func­
tion. The loudness function will have to be permitted to
vary within certain bounds. These bounds seem to be con­
strained within the expanded or complete Fechner law.
That is, we know ofno loudness data reported that are not
encompassed by the expanded law, and we are aware of
no simpler law that will contain all reported data.

Six Cases
We have constructed Table 1 to give a few examples of

an infinite set oftriplets consistent with the complete form
of Fechner's law. This table is analogous to Figure 4.3 of
Baird and Noma (1978), which they devised to elaborate
the "fourfold way" in psychophysics. Their fourfold way
involves I).L and 1).1 (columns 3 and 4 of Table 1), treat­
ing each as a constant or as a variable (dependent on either
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Table 1
Summary of the "Critical Triplets" Discussed in the Paper

L
(Loudness function)

!':J.L
(Loudness jnd)

lJ./
I

(Weber fraction)

I (Fechner)

2

L = AlogI+B
(Incomplete form of Fechner's law)

L = l-In( I+ y(I I Ithresh)" )
2 l+y

(Complete form of Fechner's law)

!':J.L = C = constant
(Fechner's assumption)

!':J.L = constant
(Fechner's assumption)

lJ./ C
I = A = constant

(Weber's law)

~I =2::[1++( It7' h rJ
(Riesz, 1928)

3
L=ty'1"

(Power law)

!':J.L 0< LI/2

(Hellman & Hellman, 1990)

M 0<_1_
I I nl2

(Jestead et al., 1977)

4 L=-ty'I 3

(Power law)
!':J.L 0< L2/3

M 0<_'_
1 1°,095

(McGill & Goldberg, 1968)

5
L = ty'1"(n arbitrary)

(Powerlaw)
!':J.L 0< L

(Ekman's principle, 1959)

~I = constant

(Weber's law)

6 L 0< I(l-b) !':J.L = constant ~I o<-yk-
(Power law) (Fechner's assumption) (Near-miss to Fechner's law)

Note-Each row corresponds to a consistent set of relationships-that is, given any two elements from one row, the third
element is implied.

(24)

(23)

That is, the subjective jnd varies approximately as the 2/3
power ofloudness (see note 1).111 from Equation 25, I1L
from Equation 29, andL from Equation 26 constitute a con­
sistent set.

An exponent of 1 (rather than 0.905) would have given
Weber's law-hence, the near-miss. Since we are at liberty
to choose a loudness function, we may choose Stevens's
law as the particular case of the complete Fechner law.
That is,

(25)

(26)

(27)

(29)

(28)

11/°c1°.905.

--L
L cc 1°.3, or I °c L 0.3 •

Differentiating and so on,

I1L °c 1(0.3-1.0) == 1-0.7
111 .

Introducing Equation 25,

I1L cc l-o.1M

will decline with increasing I raised to the exponent n12,
or about 0.135. This behavior is consistent with the dif­
ferential thresholds ofSchacknow and Raab (1973) (n ==
0.125) as reported by Jesteadt et al. (1977). Given two
members of the set of L, I1L and 111, we have found the
third member, consistent with the complete form ofFech­
ner's law.

Row 4. Now, let us find a consistent set for the near-miss
law of McGill and Goldberg (1968). These investigators
found that

cc 1-0.7/°.905 == 1°.205,

and, finally, using Equation 26,

I1L °c [Lin- ]0.205 == LO.683.

Inserting the condition that I1L cc L1/2, and introducing L
from Equation 10, we find

111 1
-oc--

I In/2 .

L or /) and generating a consistent third member-that
is, the law of sensation (column 2).

Row 1. We may observe that Fechner was the first to
have carried out this procedure of"two implies the third."
Fechner assumed Weber's law, 11111 == constant, and as­
sumed the constancy of I1L. He then derived a consistent
third member, L, by integration. The third member is, of
course, the classical Fechner law (Equation 9), which we
may now regard as a special or restricted form of the
complete Fechner law.

Row 2. We have examined a second consistent set of
L, I1L, and 11/: the set derived from Riesz's work. L was
given by the complete form ofFechner's law,Equation 13,
111 issued from Equation 15, which Riesz measured, and
I1Lwas taken as constant, to complete the consistent set.

Row 3. Let us examine a third consistent set. Taking L
from Stevens's law, now obtained as a special case of the
complete form ofFechner's law, Equation 10, and choos­
ing I1L freely (see note 1), we set I1L cc L1/2. That is, we re­
place Fechner's conjecture by setting the subjective jnd
proportional to the square root of loudness, as proposed
by several investigators. The third member ofthe set, 111,
is determined by our selection of the first two members.
We obtain the Weber fraction by differentiating L as before:

111 == 211L (/threSh )n
I ynk I

Thus, we see- that when the exponent, n, in Stevens's law,
Equation 10, takes on the value 0.27, the Weber fraction
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EQUALLOUDNESSCONTOURS

Row 5. Suppose now that we take !!.Lproportional to
L (the Brentano-Ekman-Teghtsoonian principle; Ekman,
1959; Krueger, 1989). We shall preserve Weber's law by
keeping !!.II I constant. Beginning with Weber's law,

Riesz proceeded to integrate or summate the jnds
he had measured and obtained a theoretical set of equal
loudness contours by matching ratios ofsums ofjnds. We
shall proceed somewhat differently by matching directly
the loudness of two pure tones of differing frequencies.
The experimental procedure is straightforward. Mea­
surements may be made in free field or using head-

The exponents of I in the latter two equations are equal
in magnitude and opposite in sign, a combination that is
designed to preserve Fechner's conjecture. That is, dif­
ferentiating Equation 33,

!!.L oc I-b!!.I. (35)

From Equation 34, !!.Ioc lb. Substituting !!.I oc Ib into
Equation 35 gives

(37)

(38)

(39)

L(I,f) = L(%,1000 Hz).

( )
n ( )hY _1_ =9,.L

I thresh I thresh .

( )

hln

10gIO~ = loglO ,.L
thresh I thresh

phones. We shall regard them as made in a free field for
later comparison with the equal loudness contours mea­
sured by Robinson and Dadson. A comparison tone of
frequency f is adjusted in intensity I, until it sounds as
loud as the reference tone of intensity 1and frequencyJ
(usually set at 1000 Hz). The frequency of the reference
tone is fixed, whereas I is varied as a parameter (usually
set at 10, 20, 30 ... dB).

Using Equation 13, we can now match the loudness of
two tones, differing in both frequency and intensity, with
a loudness balance condition of the following form:

Equation 37 can be solved explicitly for I as a function
offwith JI as a parameter. Solved exactly, the resulting
equation is an unwieldy expression but is conceptually
no different from Equation 37: loudness at one frequency
equals loudness at another.

A good approximation ofEquation 37 may be obtained
by observing that y« 1, since the complete form ofFech­
ner's law reduces to a simple power function for audition,
as shown in Equation 10. Substituting Equation 13 into
Equation 37 and using the inequality y« 1, we obtain the
simple form

The values of y, n, Ithresh, and I on the left side of this
equation refer to the comparison tone ofany desired fre­
quency,f The values of r. n, ~hresh' and JI on the right side
refer to the reference tone at 1000 Hz.

We can further simplify this equation with the help of
Figure 3B. Notice that the ratio i! ynever changes by a
factor ofmore than 2.5. Since we are evaluating the log­
arithm of Equation 38 to calculate the contours, we see
that the log of ylY is approximately zero (since the ratio is
close to one), and we can now replace Equation 38 with

That is, the contours depend largely on the single param­
eter n, in the ratio hln, Recalling that n(f) is the expo­
nent in the usual power function for loudness, we choose
a function similar to the one suggested by Marks (1974b,
Equation 3.4, p. 74),

n(f) = 0.28 + 2.17f-o.59 + 0.0Ifo.2, (40)

which is plotted in Figure 4.
When the contours are derived from Equation 37, with

n taken from Equation 40, we can calculate a set ofequal
loudness contours in decibel SL (i.e., relative to thresh­
old) against frequency.The theoretical contours are shown
in Figure 5A. We must add to these curves the threshold
data ofRobinson and Dadson (1956) (please see Appen­
dix B). The result is a theoretical set of equal loudness
contours in decibel SPL (i.e., relative to 10- 16 W/m 2 ) ,

(30)

(31)

(32)

(33)

(34)

(36)

!!.Ioc I,

!!.L oc L.

!!.I oc I-(I-bj
I .

!!.L = constant.

L oc II-b, b = constant

we append

Dividing the two equations gives

!!.L M
-oc-

L I'

which, when integrated, gives InL oc nln I +constant, from
which Equation 10, the simple power law ofsensation, fol­
lows directly. That is, Weber's law is preserved with the
simple power law of sensation.

Row 6. Finally, we consider the case advocated by
Krueger (1989). We let L assume the form

and

That is, Fechner's conjecture is preserved together with
the power law of sensation.

It may be seen that Fechner's conjecture (i.e., that !!.L
[column 3] is a constant) will always be preserved if the
derivative ofL (dL/dI [column 2]) times the value of!!.I
(column 4) is a constant. Thus, in row 1,AII (= derivative
of L) X constant X 1(= !!.I) is a constant; in row 6, I-b
(= derivative ofL) X constant X Ib (= !!.I) likewise is a
constant. It should be noted too that, to fulfill Fechner's
conjecture, the exponent for the power function in col­
umn 2 must match the exponent shown in column 4 (e.g.,
I-b in row 6); it is no longer free to take other values,
as was the case with rows 4 and 5.
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Figure 4. From Equation 40, the exponent is plotted as a func­
tion of frequency.

shown in Figure 5B. The derived equal loudness contours
match the measured contours quite precisely.

DISCUSSION

The particular form ofthe expanded Fechner law,Equa­
tions 8 and 13, emerged from an entropic or informational
theory of sensation and perception (Norwich, 1993; Nor­
wich & Wong, 1995). It is instructive to note that the com­
pletion or expansion ofFechner's law in this case was ef­
fected by compounding a noise or "reference signal" with

the pure stimulus signal and is, in this respect, parallel to
the approach of Delboeuf. In place of the Delboeuf's
1+//In' we have 1+y'In. The factor Inin Delboeuf's equa­
tion is associated with the quantity y'-1/I Tef in Equa­
tion 8, where I Tef is the reference signal generated by the
sensory organ (Norwich, 1993). An appeal ofthe complete
form of Fechner's law is that it produces an improved fit
to experimental data, and it avoids what has been termed
negative sensations (Murray, 1993). That is, ifR < Roin
Equation 5, the incomplete form of the law, E becomes
negative. E cannot be negative in the complete law.

We showed that the complete form of Fechner's law
contained or embraced the two standard forms ofthe law
of sensation: the classical form of Fechner's law, and the
power law. Expressed in another way, the complete law,
subject to certain values ofits parameters, could be writ­
ten more simply as either the semilog law or the power law
of sensation, with little loss in accuracy. Certain modali­
ties of sensation, such as audition, favor the power law
more strongly.

The expanded form ofFechner's law with stimulus in­
tensity represented to the first power (n = 1) seems to
have been suggested by Helmholtz (1856-1866/1924) for
the sense of vision. He reasoned as follows (representing
brightness by E and changing Helmholtz's symbol for
stimulus intensity to I to match our own): Fechner's dif­
ferential equation assumed the well-known form

dE=A
dI
I '

with A constant, whose solution is the classical or incom­
plete Fechner law ofsensation. But, reasoned Helmholtz,

the influence ofthe intrinsic light of the eye must make it­
selffelt. Together with the stimulation due to external light,

phon.
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Figure 5. (A) Equal loudness contours derived using the loudness balance function, Equation 37, with n(f) calculated from
Equation 40. Decibels (dB) SL are plotted against tone frequency. (B) The contours as shown in panel A are replotted in dB SPL.
The threshold data were supplied by the lowest contour of Robinson and Dadson (1956). The derived curves are compared with
the measured values of Robinson and Dadson (open circles).
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This differential equation, then, replaces the above equa­
tion by Fechner. Solving Helmholtz's Equation 42, we
obtain

there is alwaysbesides a stimulationdue to internal causes,
the amount of which may be considered as being equiva­
lent to the stimulation by a light ofluminosity In' It would
bemoreaccurate, therefore, to writethe formulafor theleast
perceptibledegrees ofthe intensityof sensationas follows:

For completeness, then, we include the entropic or in­
formational differential equation, which gives rise to the
complete form of Fechner's law with 1 raised to the
power n (Norwich, 1993):

dE = tkn(1-e-ZE/k) dl (44)
I'

When this differential equation is integrated with L set
equal to E, we obtain the complete law in the form ofEqua­
tion 8. We may observe that the constant y' does not ap­
pear in the differential equation but enters the solution to
the differential equation as a constant of integration. Re­
call that this equation, as well as Helmholtz's, is derived
from considerations of an internally generated stimulus
signal. Note that, when E is large, the entropy Equation 44
approaches Fechner's original Equation 41.

Lehmann's description of Fechner's law as incomplete
was based on his own chemical theory ofnerve excitation.
Translating from the German in Lehmann's introduction:

Fechner's measurement formula [Massformel] E = clog
(R /Ro) is incomplete, beingvalidonlyfor thosecaseswhere
actionof the nervous organsconsumeonly a small amount
of material, so that one does not have to go to [the sub­
stance's] limit ... Where nervous activity,on the contrary,
uses more substance, for example with photochemical
processes in the retina, it is necessary to allowmetabolism
to proceed to completion, and in so doing one obtains a
more complete psychophysical formula ...

There follows an equation slightly more complicated than
the equation above. The simpler form is derived in Leh­
mann (1905, p. 21). We include this brief description of
Lehmann's work in the interests ofcompleteness and his­
torical precedent.

Invoking the findings of King and Lockhead (1981),
Koh and Meyer (1991), West and Ward (1994), Marks et al.
(1995), and West (1996), who showed that subjects could
learn to produce different subjective responses (e.g., gen­
erate loudness curves that are power functions with var­
ious prescribed values of the exponent, n), we suggested
that a spectrum of loudness curves might be considered
as legitimate representations ofthe sensation ofloudness.
We suggested that, at a given frequency, three quantities­
loudness, L, the differential threshold for sound intensity,
111, and the differential threshold for loudness, I1L-can
vary only in unison. All three ofthese quantities are func­
tions of intensity, I. The investigator is at liberty to choose

dE=A~.
I+In

E = Alog (In+I)+c.

(42)

(43)

or measure any two ofthese quantities in accordance with
his or her view of psychophysics, but the third quantity
is then determined by the selection of the first two.

The reader might think that this restriction (two deter­
mine the third) is artificial and can be ignored. For exam­
ple, suppose that L and I1Lare chosen by the investigator
in accordance with his/her view of nature. He/she might
then think that the differential threshold can be measured
by an independent experiment. However, 111 is now pre­
determined. Using the definition of derivative, we have,
approximately,

M=I1L!dL.
dl (45)

Thus, 111 (as a function ofI) is now determined as the ratio
of I1L (a constant or a function of1) to the derivative of
L with respect to 1. That is, the Weber fraction cannot
now be measured independently. Any two ofL, I1L, and
111 as functions of1 determine the third.

We have been concerned primarily with the issue ofcon­
sistency. If Investigators A and B obtain two different
measures of the differential threshold, (111)A and (11I)B'
we have accepted the validity ofboth measures. Each mea­
sure is presumed to be true to the methodology and sta­
tistical assumptions employed by the investigator. We have
been concerned only with ascertaining the matching val­
ues of the remaining variables, such that {(I1I)A' (I1L)A'
LA} and {(I1I)B' (I1L )B' LB } constitute two consistent sets.
The complete Fechner law provides us with the requisite
flexibility to achieve these consistent sets.

It is important to appreciate the connection between
the complete form of Fechner's law and the triplet-of­
variables concept. Because the observed or empirical
loudness-intensity relation is pleomorphic, so to speak
(taking on many forms), we can understand why different
mathematical functions for I1L and 111 can remain con­
sistent with different but equally legitimate forms of the
loudness-intensity function.

One might ask what the results would be ifan inconsis­
tent triplet were used-that is, one ofthe three quantities
L, I1L, 111 could not be derived from the other two. In fact,
this effect has been reported at least once (by Stevens,
1936). It was the common belief, at that time, that Fech­
ner's conjecture of constant I1L was correct. Stevens
showed that, when L was obtained from the measurements
of B. G. Churcher, and when 111 was obtained from the
measurements ofRiesz, then I1Lcould not be reconciled
with Fechner's conjecture. One can show from Stevens's
work that for the set of measurements he adopted, I1L oc

LO.55. So, the result of postulating an inconsistent set led
to an inconsistent psychophysical result. Ultimately, a
more consistent set was postulated, and psychophysics ad­
vanced conceptually.

Our derivation ofthe equal loudness contours differed
from the method of Riesz, whose ratio-of-sums-of-jnds
technique was lent support by the work of Lim, Rabino­
witz, Braida, and Durlach (1977) and Houtsma, Durlach,
and Braida (1980). Ours was a more intuitive technique
involving the direct matching of loudness. It did, how-
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ever, require the assumption ofan appropriate form for the
exponent n as a function offrequency oftone. This method
is, therefore, at least in part, empirical, but it does have
the advantage of simplicity: It requires only two equa­
tions to define the equal loudness contours completely.
However, simple does not necessarily mean correct. If
further study shows that loudness matching is related to
ratios of sums ofjnds rather than to sums ofjnds, much
of the above would have to be modified (see Krueger,
1989, for expanded discussion).

Returning to Equation 38, the derived contours (II Ithresh)

are seen to be largely insensitive to the absolute magni­
tude of y but are sensitive to the ratio of y to y. For ex­
ample, ifyandywere rescaled to be 100 times smaller, the
derived contours would remain unchanged. Hence, ap­
pealing' to Equations 8, 9, and 10, we see that the equal
loudness contours are largely insensitive to the form ofthe
individual loudness curves (whether the curve is a power,
log, or combination law), since both the power and the log
functions emerge from Equation 8 under different values
of y. It is interesting that the spacing of the contours in
equal loudness plots (or the density ofcontours expressed
in contours per unit length along the vertical axis) does
depend on the particular form of the loudness function,
but the shape of the contours is less dependent.

CONCLUSIONS

We have tested a more complete form of Fechner's
law, which was applied to the sensation of pure tones. It
was demonstrated that this form of the law of sensation
embraced or contained the usual logarithmic and power
functions, but that it offered somewhat more flexibility in
the interpretation ofpsychophysical phenomena. Rather
than adhering to a rigid framework of (I) a single, stan­
dard law ofsensation, (2) a single functional form for the
Weber fraction, and (3) a single position on the constancy
(or lack thereof) ofthe subjective jnd, we showed that a
unified view of psychophysics would follow from an in­
definite number of"triplets" ofthese three quantities. One
must, however, be consistent in the choice ofa triplet. The
complete form ofFechner's law has a long and variegated
history. It may be accepted empirically, or it can be de­
rived from an informational interpretation of the process
of perception.
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NOTES

2. It is important to keep in mind the units in which I is measured. If
I is measured in units of power [energy/time], n takes on a value of 0.3
at 1000 Hz. However, ifI is measured in units of sound pressure [force/
area], then from the relationship 10< Pt, we see that n takes on the value
0.6, or double the previous value. It is easy to confuse the units, as
pointed out by Marks (1974a). In this paper, we measure I throughout
in units of power.

APPENDIX A
The Loudness jnd: Constant Versus Nonconstant

The constancy of the subjective jnd (Fechner's famous con­
jecture) is a necessary condition for expressing the loudness as
proportional to the number ofjnds. Recall that fj.L is defined as
the change in loudness per jnd. Thus, it may be represented more
completely by fj.L/fj.N, where fj.N is understood to be I jnd. fj.L
now becomes a variable representing the change in loudness re­
quired to span fj.N = I jnd. Thus, the constancy ofthejnd may
be written

Ifwe take the liberty ofwriting N, the cumulative number ofjnds
above threshold, as a continuous variable, then

where A and B are constants. But L = 0, when N = 0, which just
states that loudness equals zero at threshold. Hence, B = °and

L oc N. (A4)

I. We have shown that tJ.L, when computed as the third member of
a triplet (L, tJ.I, tJ.L), will often appear as a power function ofL, by way
of mathematical consistency. However, this does not provide an intuitive
understanding of the power function relationship. We are aware of only
one explanation ofthis effect that has its basis in neurophysiology. W.S.
Hellman and R. P. Hellman (1990) suggested that loudness is a linear
function of the mean neural count over a fixed interval of time in a set
ofauditory nerve fibers. Moreover, they cited experimental evidence to
support the thesis that the mean neural count is proportional to the vari­
ance of the count in the fibers constituting the set. Using these assump­
tions and a first-order Taylor series approximation, they were able to de­
rive the equation

tJ.L 0< L 1/2.

Their calculations were, obviously, approximate, and even aslight
change in the mean-variance relation will permit deviations from the ex­
ponent of 1/2 to allow for an exponent of2/3, as derived in Equation 29.

Integrating, we have

fj.L
fj.N = constant.

dL
dN = constant.

L =AN+B,

(AI)
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Figure AI. (A) Loudness as a sum of jnds. In the case where the subjective jnd is constant, we have loudness proportional to
the number of jnds. Equation A3 was plotted with A = 1 and B = O.(B) Loudness as a sum of jnds. This time, the subjective jnd
is nonconstant, and the empirical relationship of Stevens (1936), L = AN2.2, is plotted with A = I.
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Loudness is proportional to number ofjnds; loudness is express­
ible as a sum ofloudness jnds.

However, if we replace Equation AI by the equation

tiL = f(N) = some function of
tiN cumulative number ofjnds, (A5)

then, proceeding as before,

L =J; f(N')dN'. (A6)

N' is a dummy variable representing Nbut used for purposes of
integration. For example, we might have tiL /tiN = ANl.2, which
upon integration gives L = AN2.2, as found by Stevens (1936).
L is still equal to the sum ofloudness jnds but is not proportional
to the number ofjnds.

These, ideas are represented schematically in Figure A I.

APPENDIXB
Minimum Audible Field

To convert between sensation level (dB SL) and sound pres­
sure level (dB SPL), we utilize the minimum audible field data

(Gulick, Gescheider, & Frisina, 1989) ofRobinson and Dadson
(1956). Their data were fitted to the empirical equation

IOlog ([threSh) = 3 775[ln(L)]2
10 [ • 2093

o

+1O.53exp[-ln2C~9)]

+16.65exp[-6.343In
2( 8~J] - 8.221.

(BI)

The right side of Equation BI represents the threshold in units
ofdB SPL. To convert between dB SL and dB SPL, we use the
following equation:

dB SPL = dB SPL + threshold. (B2)

(Manuscript received January 16, 1996;
revision accepted for publication September 26, 1996.)




