Pattern recognition and visual word forms
In other words: Even if you don’t like the theories, you have to explain the data.
The great “visual word form area” debate

- Is the “visual word form area” specialized for visual word forms?

- Larger debates:
 - Domain general vs. Domain specific
 - Organization-by-material vs. Organization-by-process
 - Roles of learning, expertise and evolution in shaping brain function.
Fusiform Gyrus and the “Visual Word Form Area”
Fusiform Gyrus and the “Visual Word Form Area”

VWFA: Hypothesized to “contains a population of neurons that, as an ensemble, is tuned to invariant stimulus properties and structural regularities of written words” (McCandliss et al., 2003)
VWFA: Hypothesized to “contains a population of neurons that, as an ensemble, is tuned to invariant stimulus properties and structural regularities of written words” (McCandliss et al., 2003)
Fusiform Gyrus and the “Visual Word Form Area”

- Response properties (McCandliss et al., 2003):
 - Responds reliably to letters and words.
 - May also respond to faces and objects.
 - Responds more to letters than pseudo-letters
 - Modality-specific (doesn’t respond to spoken words)
 - Invariant with regard to retinal location, letter case, size and font (neural priming studies)
 - Insensitive to lexical properties (e.g. frequency)
Left Fusiform is Activated by Visual Word Forms
(Cohen et al., 2002)

Passive viewing of words, letter strings and checkerboards

Words & Letters > Checkerboards in left, but not right, fusiform cluster.
Left Fusiform is Activated by Visual Word Forms (Cohen et al., 2002)

Passive viewing of words, letter strings and checkerboards

Words > letters in left fusiform cluster.
Left Fusiform is Activated by Visual Word Forms (Cohen et al., 2002)

- How does the VWFA become specialized?

- Written language is a recent cultural development (~5400 years ago), so can’t be evolution.

- Children do not show letter/word specific activation in VWFA before learning to read.

- Initial properties intrinsic to the region and its connectivity must determine its subsequent specialization for reading.

- May be specialized for foveal objects, local object features, and invariance for position and size.
Expertise for reading in the fusiform gyrus
(McCandliss et al., 2003)

- Expertise in different visual categories (e.g. birds, cars) linked to enhanced perception of category members via more holistic processing of the stimulus, through functional re-organization of visual areas.

- Expertise for word reading may be similar.
Expertise for reading in the fusiform gyrus
(McCandliss et al., 2003)

- Literate adults group letters together into a single perceptual unit (visual word form).
- Speed of word recognition is unaffected by the number of letters for 3-6 letter words.
- Suggests processed in parallel
Expertise for reading in the fusiform gyrus
(McCandliss et al., 2003)

Hypothesis: reading experience drives progressive specialization of a pre-existing inferotemporal pathway for visual object recognition.
Expertise for reading in the fusiform gyrus
(McCandliss et al., 2003)

Evidence:

- Younger children do show word length effects for 3-6 letter words.
- ERP data shows 10-year-olds have adult-like response to high frequency, but not low frequency, words.
- Activation level of VWFA correlated with phoneme-grapheme decoding ability, controlling for age.
- VWFA less active in adults with developmental dyslexia.
“The myth of the VWFA”
(Price & Devlin, 2003)

¢ Is the VWFA really specialized for word forms?

¢ Neuropsychological evidence:

¢ “pure alexics” usually have much larger lesions (including cuneus, calcarine sulcus and lingual gyrus in addition to fusiform)

¢ “pure alexics” often have other perceptual problems (e.g. color naming, picture processing)
“The myth of the VWFA”
(Price & Devlin, 2003)

- Is the VWFA really specialized for word forms?

- Functional imaging evidence:

- Also active when subjects name familiar objects, make manipulation responses to pictures of unfamiliar objects, name colors and perform auditory and tactile word processing tasks.

3. Name Pictures > Read Name
“The myth of the VWFA”
(Price & Devlin, 2003)

So what does the “VWFA” do then? 3 possibilities:

1. Different populations of neurons in the same region, one for VWFs and others for naming, object perception etc.

Not very neurally plausible.

Would require single-cell evidence.
“The myth of the VWFA”
(Price & Devlin, 2003)

So what does the “VWFA” do then? 3 possibilities:

2. A single cognitive function, not yet identified underlies all these multimodal responses.
“The myth of the VWFA”
(Price & Devlin, 2003)

So what does the “VWFA” do then? 3 possibilities:

1. the same population of neurons could support different cognitive processes, depending on their interactions with other cortical and subcortical areas.
Visual Perceptual Learning of Words and the VWFA Debate (Xue & Poldrack, 2007)

- Korean characters presented in pairs: same/different judgment.
- Scanned before and after training.
- Difficulty controlled by amount of visual noise.
- English word control task.
Visual Perceptual Learning of Words and the VWFA Debate (Xue & Poldrack, 2007)

At pre-training scan, both words and Korean characters strongly activated VWFA. Not sig. different.

After training, less VWFA activation for Korean characters, both with same level of noise as pre-training scan, and same level of performance (by increasing noise).

Suggest that “VWFA is neither specific to words nor sensitized by visual expertise with specific writing systems”