MURI: Training Knowledge and Skills for the Networked Battlefield
ARO Award No. W911NF-05-1-0153
May 1, 2005 – September 30, 2010
Final Report, 4/16/10

Alice Healy and Lyle Bourne, Principal Investigators
Benjamin Clegg, Bengt Fornberg, Cleotilde Gonzalez, Eric Heggestad, Robert Proctor, Co-Investigators
Goals of Project

- Construct a theoretical and empirical framework for training
- Predict the outcomes of different training methods on particular tasks
- Point to ways to optimize training
3 Interrelated Project Components

(1) Experiments and data collection
 (a) Development & testing of training principles
 (b) Acquisition & retention of basic components of skill
 (c) Levels of automation, individual differences, & team performance

(2) Taxonomic analysis

(3) Predictive computational models
Organization of Present Symposium

(I) Introduction

(II) Progress, with Emphasis on Fifth Year
 (A) Experiments
 (B) Models

(III) Closed Meeting with Government Committee
MURI Principal Investigators and Co-Investigators

(1) University of Colorado (CU)
 Alice Healy, Principal Investigator
 Lyle Bourne, Co-Principal Investigator
 Bengt Fornberg, Co-Investigator

(2) Carnegie Mellon University (CMU)
 Cleotilde Gonzalez, Co-Investigator

(3) Colorado State University (CSU)
 Ben Clegg, Co-Investigator
 Eric Heggestad, Co-Investigator

(4) Purdue University (Purdue)
 Robert Proctor, Co-Investigator
MURI Research Associates and Assistants

(1) University of Colorado (CU)
 Bill Raymond, Research Associate
 Carolyn Buck-Gengler, Research Associate
 James Kole, Research Associate
 Michael Young, Graduate Student
 Shaw Ketels, Graduate Student
 Keith Lohse, Graduate Student
 Lindsay Anderson, Graduate Student
 Blu McCormick, Graduate Student
 Michael Overstreet, Research Assistant

(2) Carnegie Mellon University (CMU)
 Varun Dutt, Graduate Student

(3) Colorado State University (CSU)
 Lisa Durrance Blalock, Graduate Student
 Heather Mong, Graduate Student
 John Blitch, Graduate Student
 Robert Gutzwiller, Graduate Student

(4) Purdue University (Purdue)
 Motonori Yamaguchi, Graduate Student
 Dongbin Cho, Graduate Student
 Yun Kyoung Shin, Graduate Student
 Jim Miles, Research Associate
Meeting Presenters

(1) Overview and Coordination
 Healy and Bourne

(2) Experiments
 (a) Development & Testing of Training Principles
 Healy and Bourne
 (b) Acquisition & Retention of Basic Components of Skill
 Proctor
 (c) Levels of Automation, Individual Differences, & Team Performance
 Clegg and Heggestad

(3) Modeling
 (a) IMPRINT
 Raymond and Buck-Gengler
 (b) ACT-R
 Gonzalez

(4) Conclusions and Discussion
 Bourne
Development and Testing of Training Principles: Completed Experiments

(1) Tests of the generality across tasks of individual principles
(2) Tests of multiple principles in a single task
(3) Tests of principles in complex, dynamic environments
(4) Developing and testing new principles
Serial Position Principle

Retention is best for items at the start of a list (primacy advantage) and at the end of a list (recency advantage).
Procedure

• 48 trials
• 7-item sequences
• One optimal deployment location
• Free or serial recall
• No threat or threat
• Testing over 2 weeks
Procedure

• 48 trials
• 7-item sequences
• One optimal deployment location
• Free or serial recall
• No threat or threat
• Testing over 2 weeks
Imagine you are a military intelligence analyst. You are on the battlefield testing team for a new micro unmanned aerial vehicle (UAV, Figure 1).

Your mission is to monitor enemy forces in order to inform remote pilots of the best locations to deploy these UAV units.

You will see a grid representing a battlefield. After a green x flashes at the center of the grid, a series of square blips representing enemy forces will light up. These blips will appear and disappear one at a time on the screen.

Your goal is to choose a location on the battlefield at which to place the UAV from which it can gain the greatest amount of useful information possible about all enemies on the battlefield. Because the sensors on this UAV that are used for data gathering have a limited range, the closer the UAV is to an enemy location, the more information it can gain about it. Keep in mind that each scenario has a unique best location for UAV deployment.

To carry out your mission, pay close attention to the exact locations of enemies as they are presented on the screen one at a time. After seeing all of the enemies in a series, you must immediately make a decision as to the battlefield position that represents the single most useful UAV placement, and use the mouse to click on that location to inform battlefield commanders of your choice. You can only pick ONE placement per series of enemy locations, and, once selected, your choice cannot be changed.

Immediately after choosing what you believe to be the best UAV placement, you will see a screen with a star showing the actual location of most useful UAV placement for the series of enemy locations just
Design

Within-Subjects Variables

Serial Position (1-7)

Testing Block (1-3)

Between-Subjects Variables

Threat Condition (No Threat, Threat)

Recall Condition (Free, Serial)
Serial Position

5.0

5.2

5.4

5.6

5.8

6.0

6.2

Deployment Decision

Mean Distance from Location

No Threat

Threat

Serial Position

1 2 3 4 5 6 7
Recall

Proportion of Errors

Serial Position

Free
Serial
Principle of Training Compression

Training can be truncated by eliminating practice on known facts.

Principle of Testing

A test can strengthen a person’s knowledge of material as much as, or possibly even more than, can further study.
Procedure
Experiment 1

• Facts about unknown plants
• 64 facts about plants; each fact specific or general
 • “A tree that is native to southern India is Pawthra”
 • “A tree that comes from Asia is Pawthra”
• Multiple-choice test; 4 alternatives
 • “A tree that is native to southern India is ___”
• 4 study-test training rounds
• 1st and 4th rounds involve all 64 facts; 2nd and 3rd rounds involve fewer facts in some conditions
• Full-study, Dropout, Yoked, Clicker conditions
• Immediate test and retention test 1 week later
Procedure

Experiment 1

• Facts about unknown plants
• 64 facts about plants; each fact specific or general
 • “A tree that is native to southern India is Pawthra”
 • “A tree that comes from Asia is Pawthra”
• Multiple-choice test; 4 alternatives
 • “A tree that is native to southern India is ___”
• 4 study-test training rounds
• 1st and 4th rounds involve all 64 facts; 2nd and 3rd rounds involve fewer facts in some conditions
• Full-study, Dropout, Yoked, Clicker conditions
• Immediate test and retention test 1 week later
Design
Experiment 1

Between-Subjects Variable

Training Condition
(Full-Study, Dropout, Yoked, Clicker)

Within-Subjects Variables

Test
(Immediate, Retention)

Training Format
(General, Specific)

Test Format
(General, Specific)
Procedure
Experiment 2

• Facts about unknown plants
• 64 facts about plants; each fact specific or general
 • “A tree that is native to southern India is Pawthra”
 • “A tree that comes from Asia is Pawthra”
• Multiple-choice test; 4 alternatives
 • “A tree that is native to southern India is ___”
• 4 study-test training rounds
• 1st and 4th rounds involve all 64 facts; 2nd and 3rd rounds involve fewer facts
• Immediate test and retention test 1 week later
• Study-Test, Study-Study, Test-Test conditions
Design

Experiment 2

Between-Subjects Variable

Training Condition
(Study-Test, Study-Study, Test-Test)

Within-Subjects Variables

Test
(Immediate, Retention)

Training Format
(General, Specific)

Test Format
(General, Specific)
Test Experiment 1

Test Experiment 2
Principle of Optimal Modality Use

Learning is better when information is seen than when it is read, and it is best when the information is both read and seen.

Optimal Modalities:

(1) Both Read & See (2) See (3) Read
Design

Between-Subjects Variable

Condition
(Single, Double, Mixed)

Modality
(Words, Symbols)

Within-Subjects Variables

Block
(1-6)

Message Length
(1-6 commands)
Left two squares
Down two levels
Forward one step
Condition	Proportion Correct
double | 0.75
mixed | 0.65
single | 0.50
Proportion Correct

Message Length

Symbols Double
Words Double
Words Single
Symbols Single
Principle of Positive Focusing

Regularities obeying complex rules can sometimes be best appreciated with only positive exemplars, rather than both positive and negative exemplars.
Design

Between-Subjects Variable
Grammar (*Same, Different*)
Acquisition Condition (*All Positive, Blocked, Mixed*)

Within-Subjects Variables
Week (*Week 1, Week 2*)
String Type (*Ungrammatical, Grammatical*)

Dependent Variables at Test
Number Correct (*out of 15*)
Confidence Rating (*1-6*)
The bar chart shows the mean total number correct across different acquisition conditions.

- **All Positive**: The highest mean total number correct, slightly above 9.5.
- **Blocked**: A lower mean total number correct, around 8.5.
- **Mixed**: Similar to Blocked, with a mean total number correct around 8.5.

The error bars indicate the variability around each mean.
Acquisition

All Positive | Blocked | Mixed

Mean Confidence Rating (1-6)
Development and Testing of Training Principles

(1) Tests of the generality across tasks of individual principles
(2) Tests of multiple principles in a single task
(3) Tests of principles in complex, dynamic environments
(4) Developing and testing new principles

- Serial Position Principle
- Principle of Training Compression
- Principle of Testing
- Principle of Optimal Modality Use
- Principle of Positive Focusing
Other CU MURI Presentations at RMPA

McCormick, B., & Healy, A. F. Words and symbols use different working memory resources in a navigational task.

Overstreet, M. F., & Healy, A. F. Item and order information in semantic memory: Students’ retention of the CU fight song.

Young, M. D., Healy, A. F., & Bourne, L. E., Jr. Artificial grammar learning: Retention and transfer.
Significant Publications Based on MURI Research Over the Last Year

(1) 21 submitted manuscripts

(2) 19 peer-reviewed journal publications

(3) 8 chapters published in books or conference proceedings

(4) 36 presentations at professional meetings

(5) 1 doctoral dissertation
Significant Meetings Related to Army Training over Last Year

(1) **Healy & Proctor**, Workshop to Explore Issues and Mitigation Strategies for Long Term Retention of Military Expertise
 October, Mesa, AZ

(2) **MURI team**, RMPA Convention, Ellis-Battig Memory Symposium
 April, Denver, CO

(3) **MURI team**, Human Factors and Ergonomics Society Meeting, Proctor Proposed Symposium
 September, San Francisco, CA