Acquisition and Retention of Basic Components of Skill

Robert W. Proctor
Purdue University

MURI Annual Meeting : September, 2008
MURI task taxons and IMPRINT taxons

<table>
<thead>
<tr>
<th>MURI Task features</th>
<th>IMPRINT Taxons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perception/attentional processing</td>
<td></td>
</tr>
<tr>
<td>Visual processing</td>
<td>Visual</td>
</tr>
<tr>
<td>Language processing (written)</td>
<td>Communication (reading & writing)</td>
</tr>
<tr>
<td>Auditory processing</td>
<td></td>
</tr>
<tr>
<td>Language processing (oral)</td>
<td>Communication (oral)</td>
</tr>
<tr>
<td>Tactile input</td>
<td>Fine motor - discrete</td>
</tr>
<tr>
<td></td>
<td>Fine motor - continuous</td>
</tr>
<tr>
<td>Executive control/monitoring</td>
<td>Information processing</td>
</tr>
<tr>
<td>Memory/symbolic representation</td>
<td>Communication (oral)</td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>Imagery/visual representation</td>
<td>Information processing</td>
</tr>
<tr>
<td>Concept formation/classification</td>
<td>Information processing</td>
</tr>
<tr>
<td>Reasoning/problem solving</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>Response planning</td>
<td></td>
</tr>
<tr>
<td>Motivation/affect</td>
<td>Communication (oral)</td>
</tr>
<tr>
<td>Speech planning</td>
<td>Communication (reading & writing)</td>
</tr>
<tr>
<td>Motor planning</td>
<td>Fine motor - discrete</td>
</tr>
<tr>
<td>Physical/communicative response</td>
<td>Fine motor - continuous</td>
</tr>
<tr>
<td>Manipulation/fine motor</td>
<td>Fine motor - discrete</td>
</tr>
<tr>
<td>Action/gross motor</td>
<td>Gross motor - light</td>
</tr>
<tr>
<td>Language/speech production</td>
<td>Communication (oral)</td>
</tr>
</tbody>
</table>

From Raymond at the last meeting
<table>
<thead>
<tr>
<th>MURI Task features</th>
<th>MURI task taxons and IMPRINT taxons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perception/attentional processing</td>
<td>Visual processing</td>
</tr>
<tr>
<td></td>
<td>Language processing (written)</td>
</tr>
<tr>
<td></td>
<td>Auditory processing</td>
</tr>
<tr>
<td>Cognitive/affective processing</td>
<td>Executive control/monitoring</td>
</tr>
<tr>
<td></td>
<td>Memory/symbolic representation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imagery/visual representation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical/communicative response</td>
<td>Motor planning</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Raymond at the last meeting
Research Topics

I. Transfer of perceptual-motor learning
 - **Visual, linguistic, auditory processing**
 - **Visual/Symbolic representation**
 - **Motor planning (discrete)**

II. Mixed mappings and tasks
 - **Executive control/monitoring**
 - **Visual representation**
 - **Motor planning (discrete/continuous)**

III. Performance of multiple tasks
 - **Executive control/monitoring**
 - **Visual/Symbolic representation**
 - **Motor planning (discrete)**
Research Topics

I. Transfer of perceptual-motor learning
 - Visual, linguistic, auditory processing
 - Visual/Symbolic representation
 - Motor planning (discrete)

II. Mixed mappings and tasks
 - Executive control/monitoring
 - Visual representation
 - Motor planning (discrete/continuous)

III. Performance of multiple tasks
 - Executive control/monitoring
 - Visual/Symbolic representation
 - Motor planning (discrete)
I. Transfer of Perceptual-Motor Learning

• Paradigm:

![Diagram showing practice and transfer paradigms]

• In the transfer task, responses are typically faster when stimulus and response locations correspond than when they do not (the Simon effect).

• Transfer of learning is implied if the Simon effect is reduced after practice with a spatially incompatible mapping.
I. Transfer of Perceptual-Motor Learning

• Training specificity:

 - The degree of transfer depends on
 (a) Similarity between learning and test contexts, and
 (b) Associative strength between a learned event and contextual
 features present during learning.

 - Similarity between the learning and text contexts is a function of
 feature overlap.

 - Associative strength depends on the amount of practice.
I. Transfer of Perceptual-Motor Learning

- Training specificity:

\[
U_N(E_1|C_T) = \sum_{Y \in C_T} \frac{\sum_{X \in C_P} f_N[E_1, S(X, Y)]}{\sum_{Y \in C_T} \sum_{X \in C_P} f_N[E_k, S(X, Y)]}
\]

- \(E \) : Learned event
- \(C_P \) : Practice context
- \(C_T \) : Test context
- \(S \) : Similarity function
- \(f \) : Associative strength
- \(N \) : \# of trials
Amount of Practice

- The strength of learned associations between stimulus and response depends on the amount of practice

Strengthening of Association

e.g.,

\[f_N(E_i, X) = \sum_{r=1}^{N} \alpha r^{-\beta(X)} \]

- \(\alpha \): initial strength
- \(\beta(X) \): learning rate
- \(N \): # of practice trials

Anderson (1982)
Amount of Practice (Linguistic Stimuli)

- Proctor, Yamaguchi, Zhang, & Vu (2008)
Feature Overlap

- Feature overlap between the learning and testing contexts depends on similarity of contextual features.

Similarity

\[S(X, Y) = \beta'(X) \exp\{-d(X, Y)\} \]

\(d(X, Y)\): psychological distance between \(X\) and \(Y\)

\(\beta'\): ‘transfer coefficient’ related to \(\beta\)

The ‘transfer coefficient’ is such that:

\[X \neq Y \Rightarrow \beta(X) > \beta'(X) \]
Feature Overlap – Stimulus Modality

Feature Overlap – Stimulus Modality

- Proctor, Yamaguchi, & Vu (2007)
Feature Overlap – Stimulus Modality

- Proctor, Yamaguchi, & Vu (2007)

![Visual to Auditory Simulation Effect](image)
Feature Overlap – Stimulus Type
(Physical-location, symbol, linguistic stimuli)

- Proctor, Yamaguchi, Zhang, & Vu (2008)
Feature Overlap – Stimulus Type
(Physical-location, symbol, linguistic stimuli)

- Proctor, Yamaguchi, Zhang, & Vu (2008)
Feature Overlap – Stimulus Type
(Physical-location, symbol, linguistic stimuli)

- Proctor, Yamaguchi, Zhang, & Vu (2008)
Feature Overlap – Stimulus Type (Physical-location, symbol, linguistic stimuli)

- Proctor, Yamaguchi, Zhang, & Vu (2008)

Word ↔ Arrow

Word ↔ Location
Feature Overlap – Spatial Dimensions (Auditory Task)

- Proctor, Yamaguchi, & Vu (2007)
Feature Overlap – Response Mode

![Graph showing Simon effect (ms) for Joystick Simon and Keyboard Simon with different practice modes: Control, Joystick Practice, Keyboard Practice. The graph compares the response times across different conditions.]
Principle of Training Specificity

• The principle of training specificity is applicable to perceptual-motor learning.

• Specificity of transfer is confirmed for:
 (a) Stimulus modality (b) Stimulus type
 (c) Spatial dimension (d) Response mode

• Specificity can be attributed at least in part to feature overlap of learning and training contexts.

• Specificity can be overcome with extended practice in some conditions (e.g., word ↔ arrow)
 – This may be due to strengthening of associations between response and abstract representations of task features, or learning of an abstract ‘rule’.
Influence of Intervening Task (with different target items)

- Another line of research looks at influences of an intervening task for previously learned associations.
Influence of Intervening Task (with different target items)

- Two separate practice sessions with different stimuli
Influence of Intervening Task (with different target items)

- Two separate practice sessions with different stimuli

![Graph showing Simon Effect](image)
Influence of Intervening Task
(with different target items)

- A previously learned association is offset by learning of a new association.

Practice with the stimulus X for n trials $\rightarrow f_N(E,X)$

Practice with another stimulus Y for m trials $\rightarrow f_M(E,X)$

The associative strength for X after practicing with Y may be:

$$f_{N+M}(E,X) = f_N(E,X) - f_M(E,Y)$$

Or

$$f_{N+M}(E,X) = \frac{f_N(E,X)}{f_N(E,X) + f_M(E,Y)}$$
Practice with Mixed Target Items

- Two different types of target items can occur in a practice block

```
Practice (Mixed)

or

RIGHT

Transfer

RIGHT

```
Practice with Mixed Target Items

- # of word trials were equal for the two practice conditions
- Predict equally strong associations if # of trials is the only relevant factor.

![Graph showing Simon Effect for Word Only and Arrow & Word conditions. The graph indicates a significant difference in Simon Effect between the two practice conditions.]
Practice with Mixed Target Items

• Learning of an association is interfered with in the mixed target condition.

• This result is consistent with an offset of a learned association.
Further issues

1. Variable practice hypothesis
 - Immediate test performance may be poor, but retention is better when practice contexts are variable.

2. Factors affecting the degree of interference
 e.g., Similarity between mixed stimuli
Research Topics

I. Transfer of perceptual-motor learning
 - Visual, linguistic, auditory processing
 - Visual/Symbolic representation
 - Motor planning (discrete)

II. Mixed mappings and tasks
 - Executive control/monitoring
 - Visual representation
 - Motor planning (discrete/continuous)

III. Performance of multiple tasks
 - Executive control/monitoring
 - Visual/Symbolic representation
 - Motor planning (discrete)
II. Mixed Mappings and Tasks

• Paradigm:

Location-irrelevant

![Diagram showing location-irrelevant paradigm with colored stimuli and Simon task]

Location-relevant

![Diagram showing location-relevant paradigm with white stimuli and SRC task, horizontal line as compatible mapping, and vertical line as incompatible mapping]

Colored stimuli \(\rightarrow\) Simon task

White stimuli \(\rightarrow\) SRC task; horizontal line – compatible mapping

Vertical line – incompatible mapping
Mixed Mappings and Tasks

• Dissociation of the compatibility effects for the location-relevant (SRC) and location-irrelevant (Simon) trials.

• The influences of payoffs appeared in both SRC and Simon trials.

• ACT-R models of the tasks are in progress.
Research Topics

I. Transfer of perceptual-motor learning
 - Visual, linguistic, auditory processing
 - Visual/symbolic representation
 - Motor planning (discrete)

II. Mixed mappings and tasks
 - Executive control/monitoring
 - Visual representation
 - Motor planning (discrete/continuous)

III. Performance of multiple tasks
 - Executive control/monitoring
 - Visual/Symbolic representation
 - Motor planning (discrete)
III. Performance of Multiple Tasks

- Executive control/monitoring
 - Coordinating performance of 4 tasks in a synthetic work environment
 - Practice and transfer with payoffs for 3 tasks held constant and only one changed
 - Sensitivity of strategies to relative payoff changes

- Symbolic representation
 - Can two “ideomotor” compatible tasks be performed together with no cost?
 - Always find some dual-task cost
 - Little change across relatively small amounts of practice

- Motor planning (discrete)
 - Benefits of consistent mappings for relative positions in dual-task studies for which responses are made with fingers on each hand