ACT-R models of training

Cleotilde Gonzalez and Brad Best
Dynamic Decision Making Laboratory (DDMLab)
www.cmu.edu/ddmlab
Carnegie Mellon University
Our Goals in the MURI Project

- Create computational models that will be used as predictive tools for the different effects resulting from the application of empirically-based training principles
- The predictive training models will help:
 - manipulate a set of training, task and ACT-R parameters
 - determine speed and accuracy as a result of the parameter settings and the training principles
 - Easily generate predictions of training effects for new manipulations
Agenda

• Prolonged work and the speed-accuracy tradeoff
 o The data entry task
 o ACT-R models of fatigue effects
• Repetition priming effect
 o Initial ACT-R models of repetition priming
 o Predictions to be verified in current data collection
• Training difficulty principle
 o The radar task
 o ACT-R models of consistent and varied mapping effects
Data entry is ubiquitous in human life
Opposing processes affect performance

• From Healy et al., 2004: Prolonged work results in distinctive opposite effects (facilitative and inhibitory)
• Proportion of errors increases while response time decreases.
The 2x2 levels of ACT-R

http://act.psy.cmu.edu
(Anderson & Lebiere, 1998)

<table>
<thead>
<tr>
<th>Symbolic</th>
<th>Declarative Memory</th>
<th>Procedural Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunks: declarative facts</td>
<td>Productions: If (cond) Then (action)</td>
<td></td>
</tr>
<tr>
<td>Activation of chunks (likelihood of retrieval)</td>
<td>Conflict Resolution (likelihood of use)</td>
<td></td>
</tr>
</tbody>
</table>
ACT-R equations

http://act.psy.cmu.edu

(Anderson & Lebiere, 1998)

Activation

\[A_i = B_i + \sum_j W_j \cdot S_{ji} + \sigma_A \]

Learning

\[B_i = \ln \sum_j t_j^{-d} \]

Latency

\[T_i = F \cdot e^{-A_i} \]

Utility

\[U_i = P_i \cdot G - C_i + \sigma_U \]

Learning

\[P_i = \frac{\text{Succ}_i}{\text{Succ}_i + \text{Fail}_i} \]

IF the goal is to categorize new stimulus and visual holds stimulus info S, F, T

THEN start retrieval of chunk S, F, T

and start manual mouse movement
Chunk Activation

Activation makes chunks available to the degree that past experiences indicate that they will be useful at the particular moment.

Base-level: general past usefulness
Associative Activation: relevance to the general context
Matching Penalty: relevance to the specific match required
Noise: stochastic is useful to avoid getting stuck in local minima

Higher activation = fewer errors and faster retrievals

\[
A_i = B_i + \sum_j W_j \cdot S_{ji} + \sum_k MP_k \cdot Sim_{kl} + N(0, s)
\]
Production compilation

• Basic idea:
 o Productions are combined to form a macro production → faster execution
 o Rule learning:
 • Retrievals may be eliminated in the process
 • Practically: declarative → procedural transition
 o Production learning produces power-law speedup
 • The power-law function does not appear in the compilation mechanism, rather the power-law emerges from the mechanism
ACT-R Models of Fatigue Effects in Data Entry

• **ACT-R Model 1:** Prolonged work and the speed-accuracy tradeoff (Experiment 1 from Healy, Kole, Buck-Gengler and Bourne, 2004)

• **ACT-R Model 2:** Speed-accuracy trade-off changes for motoric and cognitive components (Experiment 2 from Healy, Kole, Buck-Gengler and Bourne, 2004)

• **ACT-R Model 3:** How do cognitive and motoric stressors affect different response time components: articulatory suppression and weight (Experiment 1 from Kole, Healy ad Bourne, 2006)
ACT-R model of the data entry task

- Encode next number
- Retrieve key location
- Type next number
- Hit Enter

Initiation time:
- All numbers encoded

Execution time:
- All numbers typed

Conclusion time:
ACT-R Model 1

Error Proportion

Total RT

R² = .89

R² = .89
ACT-R model 1

- **Speedup**: Production compilation:
 - From Visual → Retrieval (key loc) → Motor
 - To Visual → Motor
 - Faster access to key loc

- **Accuracy ↓**: Degradation of source activation (W):
 \[
 A_i = B_i + \sum_j W_j \cdot S_{ji} + \sum_k MP_k \cdot Sim_{ki} + N(0, s)
 \]
ACT-R Models of Fatigue Effects in Data Entry

- **ACT-R Model 1**: Prolonged work and the speed-accuracy tradeoff (Experiment 1 from Healy, Kole, Buck-Gengler and Bourne, 2004)

- **ACT-R Model 2**: Speed-accuracy trade-off changes for motoric and cognitive components (Experiment 2 from Healy, Kole, Buck-Gengler and Bourne, 2004)

- **ACT-R Model 3**: How do cognitive and motoric stressors affect different response time components: articulatory suppression and weight (Experiment 1 from Kole, Healy ad Bourne, 2006)
ACT-R Model Accuracy

![Graph showing the proportion of correct responses over blocks, with Observed and Predicted lines. The R² value is 0.68.](image)

R² = 0.68
ACT-R Model 2

Initiation Time

Conclusion Time

R² = .81

R² = .85

DDMLab – September 27, 2006 - 16
ACT-R model 2

- **Speedup**: Production compilation
 - From Visual \rightarrow Retrieval (key loc) \rightarrow Motor
 - To Visual \rightarrow Motor
 - Faster access to key loc
 - Gradual decrease in goal value (G)
 \[
 U_i = P_i \cdot G - C_i + \sigma_U
 \]
- **Accuracy ↓**: A gradual decrease in source activation (W)
 \[
 A_i = B_i + \sum_j W_j \cdot S_{\beta} + \sum_k MP_k \cdot Sim_{ik} + N(0,s)
 \]
ACT-R Models of Fatigue Effects in Data Entry

• **ACT-R Model 1**: Prolonged work and the speed-accuracy tradeoff (Experiment 1 from Healy, Kole, Buck-Gengler and Bourne, 2004)

• **ACT-R Model 2**: Speed-accuracy trade-off changes for motoric and cognitive components (Experiment 2 from Healy, Kole, Buck-Gengler and Bourne, 2004)

• **ACT-R Model 3**: How do cognitive and motoric stressors affect different response time components: articulatory suppression and weight (Experiment 1 from Kole, Healy and Bourne, 2006)
ACT-R Model 3

Total response time

Human data

ACT-R Prediction
ACT-R Model 3

Proportion correct

Human data

ACT-R Prediction
ACT-R model 3

- Same as Model 2:
- With articulatory suppression
- Not a 'fit' but a prediction
Summary of Act-R models of Fatigue

• The model provides detailed predictions of the speed and accuracy tradeoff effect with prolonged work in the data entry task:
 o Decreased RT by production compilation
 o Increase Errors by gradual decrease in source activation
• Fatigue may affect cognitive and motor components differently:
 o strong effects of fatigue by gradual decrease in goal value
 o no effects on motor components
• The ACT-R model suggest that cognitive fatigue may arise from a cognitive control and motivational processes (Jongman, 1998)
Agenda

• Prolonged work and the speed-accuracy tradeoff
 o The data entry task
 o ACT-R models of fatigue effects
• Repetition priming effect
 o Initial ACT-R models of repetition priming
 o Predictions to be verified in current data collection
• Training difficulty principle
 o The radar task
 o ACT-R models of consistent and varied mapping effects
Empirical test of model’s predictions
(Gonzalez, Fu, Healy, Kole, and Bourne, 2006)

- Effects of number of repetitions and delay on repetition priming
 - How performance deteriorates with different delays after training?
 - How re-training may help retention of skills?
Agenda

• Prolonged work and the speed-accuracy tradeoff
 o The data entry task
 o ACT-R models of fatigue effects
• Repetition priming effect
 o Initial ACT-R models of repetition priming
 o Predictions to be verified in current data collection
• Training difficulty principle
 o The radar task
 o ACT-R models of consistent and varied mapping effects
The Radar Task
(From Gonzalez and Thomas, under review; Gonzalez, Thomas, and Madhavan, under review)
The Radar Task
(From Gonzalez and Thomas, under review; Gonzalez, Thomas, and Madhavan, under review)
Current data fits to human data: effects of mapping and load

RADAR: Model Latency at Training

- **Human**
- **Model**

Condition:
- CM 1 - 1
- CM 4 - 4
- VM 1 - 1
- VM 4 - 4

Response Time (ms)
- 0
- 200
- 400
- 600
- 800
- 1000
- 1200
- 1400
ACT-R Model of automaticity

Rehearse Memory Set → Focus on Next Frame

Attend to Next Target

- No More Targets
- Target Different Type as MS
- VM: Target Same Type Try Retrieving
- CM: Target Same Type Target Found

- Not Target (Retrieval Failure)
- Target (Retrieval Success)

Respond: Target Not Found

Respond: Target Found
Consistent Mapping Conditions

Rehearse Memory Set

Focus on Next Frame

Attend to Next Target

No More Targets

Target Different Type as MS

CM: Target Same Type Target Found

Respond: Target Not Found

Respond: Target Found
Varied Mapping Conditions

- Rehearse Memory Set
- Focus on Next Frame
- Attend to Next Target
 - No More Targets
 - Target Different Type as MS
 - VM: Target Same Type Try Retrieving
 - Not Target (Retrieval Failure)
 - Target (Retrieval Success)
 - Respond: Target Found
 - Respond: Target Not Found
Current model issues

- The model depends on knowing when to retrieve
 - If the target is the same type as the memory set, in CM that means it’s the target, but in VM it may be a distracter
 - When are participants aware of the condition they’re in?
- False alarm rates should indicate when participants think they’re in CM, but actually are in VM
 - Adaptation should happen over time in VM false alarm rates
 - Latency may increase in VM due to fewer skipped retrievals (participants may initially think they’re in VM and actually get the target without doing a retrieval)
Summary of this year’s accomplishments

• Generation of new ACT-R models to demonstrate the Training Difficulty hypothesis in the radar task
 o effects of consistent and varied mapping with extended task practice
 o Initial tuning of the model with experimental data collected
• Enhancement of ACT-R models and creation of new models that reproduce the speed-accuracy tradeoff effect for the data entry task
• Enhancement of current ACT-R models of repetition priming and depth of processing for the data entry task
• Initial development of a general model of ACT-R fatigue that can be applied to any existing model
Plans for next year

• On the data entry task:
 o Report on the cognitive functions and mechanisms corresponding the speed-accuracy trade off in prolonged work, based on ACT-R/empirical results
 o Enhance and create the models corresponding to the repetition priming and depth of processing effects

• Generate a predictive training tool for the data entry task in which training, task, and ACT-R parameters can be manipulated to produce speed and accuracy results

• On the Radar task:
 o Reproduce the effects of the difficulty of training hypothesis
 o Produce new predictions on the effects of stimulus-response mappings
 • Add learning to condition determination