1. **Common Causes of Brain Damage**
 - Cerebrovascular Disorders = “Stroke”
 - Tumors
 - Closed-head injuries
 - Infections
 - Neurotoxins
 - Genetic Factors

2. **Cerebrovascular Disorders = “Stroke”**
 - May result from:
 - Cerebral hemorrhage
 - Bursting of an aneurysm (balloon-like dilation of a weak area of a blood vessel)
 - Aneurysms can be congenital (present from birth) or the result of infection, toxins, etc.
 - Cerebral ischemia
 - Thrombosis – a plug (ex. A blood clot, fat, cancerous cells, air bubbles) becomes lodged at site of formation
 - Embolism – a plug travels from the site of formation and becomes lodged in smaller blood vessels
 - Arteriosclerosis – blood vessel walls thicken and the space inside narrows

3. **Arteriosclerosis**

4. **Ischemia and Excitotoxicity**
 - Brain damage during ischemia believed to result part from excessive release of glutamate
 - Over-activates postsynaptic glutamate receptors, triggering an excessive influx of Na\(^+\) and Ca\(^{++}\)
 - Damage produced by ischemia takes a while to develop and spread

5. **Mechanisms of Neuronal Death After Stroke**

6. **Stroke Damage**

7. **What Can Be Done to Preserve Neurons?**
 - Remove clot
• Surgically
 – Use tPA (tissue plasminogen activator) to break up the clot –
 must be given within 3 hrs of the stroke
• Experimental:
 – Block excitatory synapses
 – Stimulate inhibitory synapses
 – Block flow of calcium and zinc
 – Cool the brain

Brains On Ice
Brain Tumors
Brain Tumors
Closed-head Injuries
 • Contusion – damage to the cerebral circulatory system
 producing internal bleeding, and ultimately a hematoma
 • Contusions occur when the brain slams against the inside of
 the skull
 • Contusions frequently occur on the side of the brain opposite
 side of the head where the blow occurs
 • Blood can accumulate in the subdural space (between the
dura mater and the arachnoid membrane)
Trepanation – Boring a Hole Through the Skull
Closed-head Injuries
 • Concussion - a disturbance of consciousness with no evidence
 of contusion or other structural damage
 • Coma - a complete loss of consciousness
Dementia Pugilistica or Punch-drunk Syndrome
 • Progressive neurodegenerative disease linked to multiple
 blows to the head
 • Symptoms include light-headedness, depression, memory
 impairment, emotional instability and erratic behavior - can
 progress to dementia
 • Has been found in professional athletes participating in
 football, ice hockey, professional wrestling and other contact
 sports
• NFL Players Association collaborating with the Center for the Study of Traumatic Encephalopathy (CSTE) at Boston University School of Medicine

16 Unanswered questions about chronic traumatic encephalopathy:
• How many concussions does it take to cause CTE?
• What severity of concussions causes CTE?
• How many years of repetitive concussions does it take to cause CTE?
• How many years after an athlete receives his/her last concussion does CTE begin to deteriorate the brain?
• Is CTE manifested uniquely in each individual athlete?
• Do different athletes have different tolerances?

17 Brain Infections - Encephalitis
• Bacterial Infections
 – E.g. Syphilis - infecting bacteria may go dormant for several years before they become virulent and attack many parts of the body including the brain – a syndrome of insanity and dementia may result if left untreated

18 Brain Infections - Encephalitis
• Viral Infections
 – Viruses with a particular affinity for the nervous system
 • E.g. Rabies - takes time to attack the brain (at least a month) - produces fits of rage and ultimately death
 • E.g. Polio - preferentially attacks motor neurons
 – Viruses that can attack the nervous system, but have no special affinity for it
 • E.g. Mumps, measles, herpes
 – Some mosquito- and tick-borne illnesses
 • E.g. West Nile

19 Neurotoxins
• Brain damage can be produced by a variety of toxins in the environment
– E.g. Mercury - “Mad hatters” were the victims of mercury poisoning
– E.g. Lead - “Crackpots” were originally those who drank tea from cracked ceramic pots with lead cores

• Sometimes drugs used to treat a disease can have neurotoxic effects
 – Tardive dyskinesia (tremors and other involuntary movements) can be produced by exposure (ranging from a few days to more than 20 years) to certain antipsychotic medications

20 Genetic Factors
 • Some genetic disorders are accidents of cell division (ex. In Down syndrome an extra chromosome in pair 21 is present in all cells – produces retarded intellectual development)
 • More commonly, genetic disorders are products of abnormal genes (these are usually recessive)

21 Neuroplastic Responses to Nervous System Damage
 • Degeneration
 • Regeneration
 • Reorganization

22 Mechanisms of Recovery After Brain Damage
 • Promoting Regeneration
 – Regeneration of spinal cord
 • Transplantation of myelinated PNS nerves promoted growth of spinal cord neurons through the implanted Schwann cell myelin sheaths (make growth factors and cell adhesion molecules)
 • Neurotransplantation
 – Fetal Tissue
 • Fetal substantia nigra cells have been implanted in striatum
of Parkinson’s patients – Stem Cells
• Still in early stages
• Cells are pluripotent (can develop into many types of mature cells)

28 Neurotrophic (Nerve Growth) Factors
29 Mechanisms of Recovery After Brain Damage
• Promoting Regeneration
 – Regeneration of spinal cord
 • Transplantation of myelinated PNS nerves promoted growth of spinal cord neurons through the implanted Schwann cell myelin sheaths (make growth factors and cell adhesion molecules)
• Neurotransplantation
 – Fetal Tissue
 • Fetal substantia nigra cells have been implanted in striatum of Parkinson’s patients
 – Stem Cells
 • Still in early stages
 • Cells are pluripotent (can develop into many types of mature cells)

30 What Are Stem Cells?
31 Mechanisms of Recovery After Brain Damage
Promoting Regeneration
 – Regeneration of spinal cord
 • Transplantation of myelinated PNS nerves promoted growth of spinal cord neurons through the implanted Schwann cell myelin sheaths (make growth factors and cell adhesion molecules)
• Neurotransplantation
 – Fetal Tissue
 • Fetal substantia nigra cells have been implanted in striatum
of Parkinson’s patients
– Stem Cells
 • Still in early stages
 • Cells are pluripotent (can develop into many types of mature cells)
• Rehabilitative Training

Phantom Limb Sensation & Rehabilitative Training
• About 50% of amputees experience a continuing sensation of the amputated body part
• Until the 1990’s, it was generally believed that the sensations were coming from the stump
• We now know that reorganization of the somatosensory cortex is responsible - the greater the reorganization the more likely and more intense the phantom sensations

The MAP of the Somatosensory Cortex Explains Why Touch In Some Locations Can Elicit Phantom Limb Sensation

Training Can Facilitate Additional Reorganization Of The CNS
• Phantom limb sensation can range from occasional tingling to intense pain
• Sometimes the sensation fades within days or weeks, but it can last a lifetime
• If the phantom sensation is painful, training can help
• E.g. Sensation of fingernails digging into the palm - relax the “phantom hand” by relaxing the image of the hand