1 Anatomy of the Nervous System

1. Relational and Anatomical Terms often used
2. Supporting structures: Skull, Meninges and Cerebrospinal fluid
3. Peripheral Nervous System:
 A. Autonomic nervous system
 a. Sympathetic nervous system
 b. Parasympathetic nervous system
 c. Enteric nervous system
 B. Somatic nervous system
 a. Cranial nerves
4. Central Nervous System:
 A. The Brain
 B. The Spinal Cord

2 Anatomical Terms
 for Direction

3 Support and Protection of the Brain

4 The Skull

5 Meninges And Cerebrospinal Fluid

6 Meningitis and Encephalitis
 • Meningitis
 − Infection of the meninges (linings) of the brain, as well the CSF between them
 • Encephalitis
 − Infection of the brain itself

7 Cerebrospinal Fluid
 • Produced by choroid plexus from blood plasma
 • Clear, colorless, containing a high concentration of salts
 • Involved in excreting wastes from the brain (excess neurotransmitter, etc.)
 • Circulates around the brain in the subarachnoid space, fills ventricles and central canal of spinal cord (source for spinal tap)
 • Cushions brain from shock and sudden changes in pressure

8

9 Cerebrospinal Fluid
 • Excess CSF is continuously absorbed into dural sinuses (blood filled spaces which run through the dura mater and drain into the jugular veins of the neck)
Hydrocephalus (Greek: “water head”)
- Occurs in about 1:500 births
- Treated by inserting a tube (shunt) to drain CSF from the blocked ventricle into a vein

The Nervous System
1) Somatic Nervous System
 - Sensory systems and skeletal muscles involved in movement
2) Autonomic Nervous System (self-regulating)
 - Internal “motor” (efferent) system working all the time
 a. Sympathetic Nervous System
 - (waking up “fight or flight”)
 b. Parasympathetic Nervous System
 - (calming = “business as usual”)
 c. Enteric Nervous System
 - Alimentary canal (gut) effector system

SOMATIC NERVOUS SYSTEM
- Sensory
 - Carries sensory signals from skin, skeletal muscles (proprioception), joints, bones, and other sensory systems to CNS = afferents to CNS
- Motor
 - Carries instructions from CNS to skeletal muscles = efferents from CNS
- Cranial nerves
 - Deal with smell, vision, equilibrium (balance), hearing, taste, etc
 - 12 pairs of cranial nerves: 1 & 2 purely sensory, others contain both sensory and motor fibers
 - Project from the brain

Autonomic Nervous System

Damage to the Spinal Cord Can Have Profound Consequences
Autonomic Nervous System

The Brain
- Brain size is not necessarily predictive about what the brain DOES or CAN DO
- The size of a particular brain region relative to the rest of the brain gives an indication of that
region’s importance for the animal
- Examples of proportionally large brain regions:
 - Gorillas and humans: visual centers
 - Dolphins and bats: echolocation regions
 - Racoons: somatosensation and digit representation
 - Rats: olfactory bulbs

22 Major Structures of the Adult Brain
23 Development of the Human Brain
25 5 Major Divisions of the Adult Brain
26 The Hindbrain: Myelencephalon & Metencephalon
 • Reticular Formation
 - Involved in sleep, attention, movement, maintenance of muscle tone, various cardiovascular and respiratory reflexes
 • Pons and Medulla
 - Many ascending and descending tracts (autism link?)
 - Help control respiration and heart rhythms, blood pressure, coughing, sneezing, swallowing and vomiting
 • Cerebellum
 - Important for fine motor control and cognitive process that require precise timing (e.g. playing a musical instrument)

27 The Hindbrain: Myelencephalon & Metencephalon
 • Damage to the Pons
 - may result in double vision and partial paralysis of the body
 • Damage to the Medulla
 - may cause death
 - may create loss of pain and temperature sensation and make swallowing difficult
 • Damage to the Cerebellum
 - may influence body movements and hinder walking
 - may make sitting upright impossible
 - may cause cognitive problems?

28 Alterations in the Pons: A Link to Autism?
 • Several nuclei in the posterior pons are smaller than normal in individuals with autism
29 Midbrain: Mesencephalon
 • Superior Colliculus
 - visual function
 • Inferior Colliculus
 - auditory function
 • Substantia nigra
 - Contains dopaminergic neurons that communicate with the caudate nucleus and putamen in the basal ganglia
 - Parkinson’s disease

30 Forebrain: Diencephalon
• Thalamus (at the top of the brainstem)
 – Processes and relays most sensory information (ex. sight, sound, feelings over the body)
• Hypothalamus
 – Involved in almost all complex behavior: feeding, sexual behavior, sleeping, temperature regulation, fighting, emotional behavior
• Pituitary Gland
 – Releases hormones

31 Forebrain: Diencephalon
• Damage to the Thalamus
 – Damage to this area may result in reduced or boosted sensitivity to heat, cold, pain and pressure
• Damage to the Hypothalamus
 – may result in a variety of effects ranging from problems regulating body temperature to emotional disturbances
 – diabetes insipidus, a condition characterized by extreme thirst and the excretion of large amounts of urine

32 Forebrain: Telencephalon
• Cerebral cortex
 – Youngest part of nervous system
 – Interprets sensory input
 – Initiates voluntary movement
 – Mediates complex cognitive processes

33 Forebrain: Telencephalon
• Cerebral cortex
 – Frontal Lobes
 – Parietal Lobes
 – Temporal Lobes
 – Occipital Lobes

34 Forebrain: Telencephalon

35

36

 – Frontal Lobes
 – Parietal Lobes
 – Temporal Lobes
 – Occipital Lobes

37 Primary Motor Cortex

38 Primary Sensory Cortex

39
Functionally Related Structures: The Limbic System

- Involved in emotions, memory and social responsiveness
 - Medial Prefrontal Cortex
 - social behavior and “working” memory
 - Hippocampus
 - learning and memory, stress
 - Amygdala
 - aggressiveness, fear, anxiety and other emotions

Functionally Related Structures: The Limbic System

- Medial Prefrontal Cortex
 - damage may impair social behavior and planning (ex. Phineas Gage)
- Hippocampus
 - damage to this area may result in memory impairment (ex. Patient HM)
- Amygdala
 - damage may result in inappropriate or peculiar episodes of rage and sexual behavior

Phineas Gage

Functionally Related Structures: The Basal Ganglia

- Striatum
 - Caudate (“tail-like”)
 - Putamen
 - receives dopaminergic axons from substantia nigra in the midbrain
 - this pathway degenerates in Parkinson’s Disease – characterized by rigidity, tremors, limited voluntary movement
- Globus Pallidus